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ABSTRACT

The study of fractal geometry and chaotic dynamical

systems has received considerable attention in the past

decade. Motivated by the interesting computer graphics

produced by these fields, mathematicians have attempted to

formalize the theoretical structure of the results,

physicists have attempted to apply the theory to real world

phenomena, and laymen have enjoyed much of the popular

literature and television programs that the field has

fostered. Unfortunately, the mathematics associated with

these subjects has made them inaccessible to most

undergraduates, even if they have a strong background in

mathematics. This thesis presents the basic ideas of fractal

geometry and chaotic dynamical systems in a setting that can

be understood by undergraduate students who have had a course

in advanced calculus. We hope it will allow them to gain an

appreciation of the fields and motivate them to pursue

further study.
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I. INTRODUCTION

The subjects of fractals and chaos have attracted considerable attention in

the last decade. This interest ranges from a "cult following" of laymen who

are intrigued by the intricate computer graphics associated with the fields, to a

rigorous mathematical treatment of the subjects by topologists and experts in

dynamical systems, and to applications of these results to the real world by

engineers and physicists. However, these subjects have been almost wholly

inaccessible to undergraduates because of the level of mathematics required to

study them. This thesis presents the subjects of fractals and chaos in a setting

that can be understood by a typical undergraduate student with a solid

background in mathematics through advanced calculus.

The subjects of fractais and chaos are not new. The German

mathematician Georg Cantor (1845-1918) knew about fractals, and the French

mathematician Jules Henri Poincare (1854-1912) knew about chaos in

dynamical systems in the late nineteenth century. Additionally, the French

mathematicians Pierre Fatou (1878-1929) and Gaston Julia (1893-1978) knew

about Julia sets in the 1920s. However, it was not until the 1970s that high-

speed computers allowed others to see what these men had discovered and to

recognize the true potential of these fields. The growth of these fields has

resulted in significant scientific advances in the past decade. While the

discovery of quantum mechanics and relativity had a profound impact on

very specialized areas of science, fractals and chaos have had a universal effect

on the whole scientific community. Until recently, science had become so
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specialized that, not only were physicists and mathematicians not

communicating with each other, but molecular biologists were not

communicating with population biologists either. The science of chaos has

served to bring together the entire scientific community, including physicists,

electrical engineers, mechanical engineers, biologists, economists,

astronomers, meteorologists, medical scientists, and of course,

mathematicians.

To explain briefly, fractals and chaos help to describe the universe.

Natural objects, from crystals, plants and geological formations to weather

patterns and galaxies, seem to have a fractal-like structure which eludes

description by traditional geometric means. Additionally, dynamical

(changing) systems in the real world, from turbulence in fluids to fluctuating

economic trends and unpredictable weather patterns that previously defied

description, are now being understood through the mathematics of chaos.

While these fields are still in their infancy, the potential they have already

demonstrated seems very promising in increasing our understanding of the

physical world.

The mathematics required to understand this thesis includes basic courses

in calculus and linear algebra. Additionally, due to some of the examples, a

familiarity with numerical analysis is helpful, but not required. Most results

(specifically in the fractals portion) are presented in the Euclidean plane, with

a brief mention of more abstract spaces where applicable. Mathematical

proofs that can be understood with this basic background are presented in

their entirety. Results requiring more advanced mathematics are referenced.

Where applicable, results are explained and interpreted in a basic setting. The
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sections on Julia sets and the Mandelbrot set require a small amount of

complex variable theory. Finally, only discrete dynamical systems are treated

(with the exception of the section on the Lorenz equations), so a knowledge of

differential equations is not required.

None of the material in this thesis constitutes original research. Instead,

it is a synthesis of some of the best written works on the subjects of fractals

and chaos, interpreted and presented in such a way as to be understood by a

typical undergraduate with a basic mathematical background. Hopefully, it

will serve to stimulate further interest and deeper study in these exciting new

fields.

Specific references are listed in the sections to which they apply, and all of

the figures and examples taken directly from references are so cited as they

appear. However, we note that the two primary references for this thesis are

Barnsley (1988) for the chapter on fractals, and Devaney (1989) for the chapter

on chaos. Additionally, the references used for general information

throughout the thesis are Ross (1980) for advanced calculus, Anton (1987) for

linear algebra, Churchill (1990) and Boas (1987) for complex variables, and

Giordano/Weir (1991) and Arnold (1987) for differential equations.
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II. BASIC CONCEPTS

A. INTRODUCTION

There are several recurring mathematical concepts that appear in the

study of both fractals and chaos. An understanding of these basic concepts

simplifies this analysis. Instead of presenting them as they arise, we next

discuss these concepts as background material. They are presented in a strict

mathematical setting which is easily adapted to their further treatment

within the settings of fractals and chaotic dynamical systems. This

background material is common to most of the references cited (either as

presented material or assumed knowledge), but the presentation here most

closely follows those of Barnsley (1988) and Devaney (1989).

B. METRIC SPACES

We first introduce the concept of metric spaces. Although the notion of a

metric space defined below may seem abstract and unfamiliar, the most

common examples of the real line and the Euclidean plane are encountered

in calculus. Many results from fractal geometry can be applied to general

metric spaces, but for the purpose of simplifying them, they are presented in

their most natural or familiar settings (such as the real line or the Euclidean

plane).

A space is simply a collection of objects (a set) with some additional

structure imposed on it. In a metric space, the additional structure is a metric,

or distance function, which relates every two elements x and y in the set to a
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unique nonnegative real number d(x, y), called the distance between them.

Any distance function (or metric) must satisfy the following three axioms for

all x, y, z in the space:

1. Symmetry: d(x, y) = d(y, x);

2. Positive Definiteness: d(x, y) > 0, and d(x, y) = 0 c x = y;

3. Triangle Inequality:. d(x, y) < d(x, z) + d(z, y).

A metric space is denoted by (X, d), where X is the set and d is the

particular distance function. The metric space (R, dE) is the real line R with

d(x, y) = I x - y I. The space (R2, dE) is the Euclidean plane, where X = RXR

and d(x, y) = [(xl - yl)2 + (x2 - y2)2]1/ 2 . Whenever possible, we confine our

examples to the real line or the Euclidean plane with these metrics.

We also need the concept of closure, a thorough treatment of which can

be found in most advanced calculus texts. The closure of a set is the

intersection of all closed sets containing that set. An equivalent definition,

often presented as a theorem, is that if a sequence of points in a set S

converges to a point x in the space, then x is in the closure of S. Thus,

every set is a subset of its closure. As an example, consider the set Q of

rational numbers. The number d is not in Q, but the sequence of rational

numbers 1.4,1.41,1.414,1.4142,... converges to -F2, so F2 is in the closure of

Q (in fact, every real number is in the closure of Q).

A concept frequently associated with closure is that of denseness. A set S

is dense in a metric space (X, d) if for every point x e X and all c > 0, there

exists a point s e S such that d(s, x) < e. For example, the rational numbers

form a dense subset of the real line. Another way to state this is that between
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any two points on the real line, there exists a rational point. If a set S is

dense in the space X, then the closure of S is X.

Much of our work on fractals and chaotic dynamical systems involves a

topological property of some metric spaces called completeness. A Cauchy

sequence is a sequence in which the terms get arbitrarily close to each other,

i.e., for any e > 0, there exists a number N such that d(xn, Xm) < e for all

m, n > N. A complete metric space is one where any Cauchy sequence of

points in the space converges to a point in the space. An intuitive example is

to again consider the space of rational numbers and the sequence 1, 1.4, 1.41,

1.414, 1.4142,..., which converges to the irrational V2. Clearly, terms in this

sequence get arbitrarily close to each other; however, the limit value (42) is

not in the space of rational numbers, so the sequence does not converge to a

point in the space. This is to say that there are "holes" in the space of rational

numbers, hence it fails to be a complete space. The real line, on the other

hand, is complete, since all Cauchy sequences of real numbers do converge to

a real number. The spaces (R, d) and (R2, dE), are examples of complete

metric spaces. A rigorous development of the concept of completeness and

formal proofs of the completeness of the spaces just mentioned can be found

in most advanced calculus texts.

C. ITERATED FUNCTION SYSTEMS

Fractals can be created, and chaotic dynamical systems understood,

through an analysis of iterated function systems. A simple one-dimensional

case of such a system is demonstrated by entering a starting value in a

calculator and repeatedly activating a single function key (for example, the x2
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key). The result of executing this idea, with a starting value of 2 and the x2

key, is 2, 22, 24, 28, 216, .... In this example, the system diverges to infinity

and demonstrates a regular and predictable behavior. Another example of an

iterated function system on a calculator is to use the 'Fx key and start with

any positive number. Regardless of the initial value, this system will

converge to 1. Unfortunately, not all iterated function systems are quite so

simple. The study of chaotic dynamical systems attempts to explain irregular

behavior in more complicated iterated function systems.

A function, or map, is a rule which assigns to each element in a specified

domain a unique element in a codomain. The usual notation for this concept

is f: D-+R, where f is the rule, D is the domain, and R is the codomain. A

real-valued function of a real variable is specified by f: R--R, and a function

mapping the closed unit interval to itself is written f: [0, 1]-40, 11. A function

f: R--R of the form f(x) = ax where a is a constant, is said to be linear; if it is

of the form f(x) = ax + b with a and b constants, it is called affine.

A function is one-to-one if each element in the range is the image of a

unique element in the domain; that is fAx) = f(y) implies x = y. A function is

onto if every element in the codomain is the image of at least one element in

the domain. A continuous function f: R--R is stated as f e C, and a

continuously differentiable function is stated as f e C1. A function that is

n-times continuously differentiable is expressed by f e Cn, and its nth

derivative is written as f(n)(x). If a function is one-to-one, then its inverse fH

exists according to the rule f 1(x) = y where f(y) = x. The domain of f-1 is the

range of f. A function which is continuous, one-to-one, and onto for which

H is also continuous is called a homeomorphism. If f is a
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-homeomorphism and f and f-1 both are differentiable, then f is called a

diffeomorphism.

As previously mentioned, an iterated function system results from

repeatedly applying a function to an initial point x. The sequence x, f(x),

f(t(x)), f(f(f(x))),... is also written as x, f(x), f2(x), fP(x),. .... This sequence of

iterates is called the forward orbit of x under f, and is denoted by O+(x).

From our example above, the forward orbit of 2 under f(x) = x2 is 2, 4, 16,

256,. .... If f is a homeomorphism, f-1 exists, and the backward orbit of x

under f is the sequence x, f-1(x), f-2(x),... ,denoted by O-(x). Since f(x) =x2

is not a homeomorphism, there is no backward orbit under f. However, if

we let fRx) = 2x, then the backward orbit of 2 under f is 2, 1, 1/2, 1/4, ... A

point x for which fAx) = x is called a fixed point of f; a point x for which

fn(x) = x is called a periodic point of period n. The smallest positive integer

n such that fn(x) = x is called the prime period of x. A point x is said to be

eventually periodic if x is not periodic, but there exists an integer m such

that fro(x) is a periodic point. For a function f where the derivative is

defined on the entire domain, a point x is a critical point if f(x) = 0, for

example f(x) = x2 at x = 0. It is a degenerate critical point if it is a critical point

and Nf(x) = 0, where the prime notation denotes differentiation of the

function.

EXAMPLE. The following simple example illustrates a situation when a fixed

point is guaranteed to exist for a given function. Let f: [0, 1]-4[0, 1] be such

that f e C. Then f has at least one fixed point on [0, 1], as we now prove. If

fRO) = 0 or f(1) = 1, then 0 or I is a fixed point and we are done. Otherwise,
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f(O) > 0 and f(1) < 1, and define g(x) = f(x) - x. Since g is the difference of two

continuous functions, g is continuous. Also g(0) > 0 and g(1) < 0. Hence, by

the Intermediate Value Theorem from elementary calculus, there exists a

point a e [0, 1] such that g(a) = 0. Therefore, f(a) = a, completing the proof

(see Figure 2.1). This proof can be extended to any continuous function

mapping a dosed interval [a, b] to itself.

V y-x

a .... .......

0 a X

Figure 2.1 The fixed point of a graph f. [0,11-40, 11.

We will frequently use a geometric or graphical analysis to investigate

iterated function systems. For example, the orbit of two points, p and q,

under fAx) = x2 is shown graphically in Figure 2.2. Clearly, I and 0 are fixed

points of fAx) A x2. The orbits of points greater than 1 diverge to infinity, and
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"the orbits of points in the interval [0, 1) converge to 0. This example

suggests the notion of fixed points (or periodic points) as being "attracting" or
"repelling."

0 p lq X

Figure 2.2 The orbits of two points p and q under f(x) = x2.

A periodic point p of prime period n (to include fixed points with n = 1)

is called hyperbolic if I (f)(p) I * 1. If I (fn)(p) I < I, then p is called an

attractor, and if I (fnf)'(p) I>1, then p is called a repellor. As in the above

example with fWx) = x2, the orbit of points near an attractor tend towards that

point, while the orbits of points near a repellor tend away from that point. A

precise definition of "near" will be given in the chapter on chaos. With

fRx) = x2, the derivative is f'(x) = 2x, so the derivative evaluated at the fixed

points 0 and 1 gives f(0)=0 and f(1)= 2. Therefore, 0 is an attracting

fixed point and I is a repelling fixed point. Values in the interval [0, 1) tend
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"towards 0 and away from 1, while values in the interval (1, -) all diverge.

Hence, the point 0 "attracts" iterates and 1 "repels" them.

A graphical analysis can be very useful when analyzing fixed, periodic, or

eventually periodic points. The graphs in Figures 2.3 through 2.6 show

functions with fixed points, periodic points, eventually fixed points, and

eventually periodic points. While geometric constructions cannot replace

rigorous mathematical proofs, they are useful to demonstrate and provide

insight into phenomena that occur in iterated function systems.

y

f (a) ... ..........

0 a X

Figure 2.3 A fixed point a of f(x): f(a) - a.
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y --x

0 Pl P2 x

Figure 2.4 Periodic points of f(x): f(pl) = p2 and f(p2) = pl.

y-X

f2(p)

0 i f 2() X

Figure 2.5 An eventually fixed point p of f(x): fWf2(p)) = f2(p).
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yAL x

0 p f 2(p) X

Figure 2.6 An eventually periodic point p of f(x): f2(p) is periodic.

D. CODE SPACE

A useful concept for identifying different points on fractals (frequently

called addressing points on fractals) and analyzing chaotic dynamical systems

is that of code space. We define 7,2 as the set of all infinite sequences of

binary digits sIs2s3... where si e (0, 1). We next define a distance function

for all s, te 12 by
d(s, t) I Isi - til/2 i.

ii

Recalling the properties of a metric, it is easy to verify that this mapping

does define a distance function on 12 since I si - ti I ! 1.. Since the distance

between any two points in 12 is dominated by the convergent geometric

series

i-i 2
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a unique and finite distance exists between any two points in the code space

(that is, d(s, t) is well-defined).

The concept of code space can be extended to IN, which consists of the

infinite sequences s1, s2, S3,. • ,where si e (0, 1, 2,3,..., N-1). Here the

distance function becomes
4Wd(s, 0 Is=-tj1(

i-i

It is an easy exercise to show that the properties of a metric space are satisfied.

We will frequently perform an operation on code space known as the

shift map. The shift map a: 12-+12 is given by o(s1s2s3.• .) = (s2s3s4. .. ). The

shift map simply drops the first term in the sequence. Since a(0s2s3S4. •) =

O(1S2S4.. .), the shift map fails to be one-to-one.

In an iterated function system of the shift map a, U1, a2, g3,... on

the only fixed points are 000... and 111... ; the eventually fixed points are of

the form sls2...nOO0... and sls2. • .1... , and the periodic (or eventually

periodic) points consist of sequences having a repeating (or eventually

repeating) block of Os and Is. However, there are infinitely many points

which are neither fixed nor periodic. These points are the sequences which

have no repeating nor eventually repeating blocks of Os and Is.

We will use code space extensively and develop it in greater detail when

discussing fractals and chaotic dynamical systems. For now, this introduction

provides a brief exposure to the basic ideas of this important concept.
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E. THE CANTOR SET

The Cantor set, which has traditionally served as an important

pathological example in analysis, has secured a more distinct role in the

studies of chaos and fractals. While it is actually one of the simplest examples

of a one-dimensional fractal, we first present it in its traditional construction

to ensure familiarization with the set before analyzing it in its new guise.

To construct the classical Cantor, or middle-thirds set, begin with the unit

interval [0, 1] and remove its middle third open interval (1/3, 2/3). Of the

two remaining line segments, [0, 1/3] and [2/3, 1], remove the open middle

third of each of them. Of the four remaining line segments, again remove

their open middle thirds, and continue this iterative procedure ad infinitum.

The remaining set of points, which is a subset of the unit interval, is called

the Cantor middle-thirds (or ternary) set. It is sometimes referred to as

"Cantor dust" because of the scattered configuration of the remaining points.

A picture of the construction of the classical Cantor set is shown in Figure 2.7.

The Cantor set dearly contains an infinite number of points because, at

the very least, the endpoints of the line segments left after each iteration

remain in the set. Nevertheless, the total amount of length removed from

the unit interval is equal to one. To see this, consider the length removed

during each iteration. In the first step, a segment of length 1/3 is removed;

in the second step, two segments each of length 1/9 are removed; and in the

third step, four segments each of length 1/27 are removed. More generally,

in the kth step, 2k-I segments each of length 1/3k are removed. Summing

the total lengths removed yields

15



0 1/3 2/3 1

- -

Figure 2.7 Constructing the dassical Cantor set by removing the middle
third through infinite iteration. The Cantor set consists of the points that
remain.

L f 2"kl(/)" = (/)1T . (2J3) n= (W1)[I/(1 - 2/3)] = 1.
nfIl n=O)

So the total length removed is the entire length of the unit interval.

Another way of approaching the Cantor set is through ternary expansion.

Consider expanding each point in the unit interval in its base three form

0.xlx2x3..., where xi e (0, 1, 2). The value of each point is then xj(1/3) +

x2(1/3 2) + x3(1/33) +. ... There is a minor technicality with this approach,

because many points in the unit interval have dual ternary representations.

For example, the point 1/3 can be expressed both as .1000... and as .0222...

In fact, the endpoints of every interval in our previous construction of the

Cantor set, except for 0 and 1, have such a dual representation. The way we

remedy this is to always use the representation containing the repeating 2.

Now, all of the points between 1/3 and 2/3 have xj = 1, and these are the
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points removed in the first step of our former c-nstruction. Similarly, the

points removed in the second step have the form xj = 0 or 2, and X2 = 1.

Continuing with this analysis, we see that the points remaining in the Cantor

set are precisely those that have no ls appearing in their ternary expansion.

Thus the Cantor set consists of all points in the unit interval having

only Os or 2s in their ternary expansion. Moreover, every point which has

only Os or 2s in its ternary expansion is a member of the Cantor set. This

definition proves to be very useful when we analyze chaotic dynamical

systems. Note that the Cantor set contains no interval subsets because

between any two points, there is a point with a 1 in its ternary expansion. To

see this, assume that the Cantor set does contain an interval subset. We can

let the endpoints of this interval be XIX2.. .XnoXn+2... and X1X2.. .Xn2 Xn+2...,

where the xi agree for the first n digits, are different for the n+lst digit

(which means one must be a 0 and the other must be a 2), and after which

the digits can be arbitrary. Since every point between these two must be in the

Cantor set, points of the form xlx2. • xnl... must be in the set, contradicting

the fact that the Cantor set contains no points with ls in their ternary

expansion. This proves that the Cantor set contains no intervals, thus its

only "connected" subsets are single points. (We discuss the concept of

connectedness in detail in the chapter on Julia sets). This illustrates another

property of the Cantor set: it is totally disconnected.

Now a great paradox results. We have removed the entire length of the

interval. The only points remaining are the points of the form x = .xlx2x3 ...

where xi e (0, 2). Now we form the function f(x) = y where yi = xi/2. The

set of y values is the set of all strings of Os and is. The cardinality of this set
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is the same as the cardinality of [0, 1] since there is a one-to-one

correspondence with the binary expansion of the points of the unit interval!

Thus, the cardinality of a set does not tell the whole story of "how many"

points are actually there from the point of view of length (in the one-

dimensional case).

There are other versions of Cantor sets resulting from similar

constructions. For instance, remove instead the middle fourth, fifth, or some

other fixed (1/N) length at each step. We can also remove from the unit

interval an open middle segment of length c/3k at the kth stage where

0 < a < 1 is fixed. Then we can show the total length removed is a. These

are frequently called "fat" Cantor sets, because the total length removed from

the unit interval is now less than one. These sets can also be described in

terms of a base N expansion, from which it can be shown that a fat Cantor set

contains no intervals.
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Ill. FRACTALS

A. THE SETTING FOR FRACTALS

Fractal geometry involves the study of certain subsets of metric spaces. It

can be viewed as an extension of Euclidean geometry and is frequently used to

describe objects that occur in nature, such as crystals, plants, clouds, and

geological formations (see, for example, Cherbit (1991)). Fractals have been

applied to computer graphics to store information efficiently, examples of

which can be found in Barnsley (1988). Moreover, the use of fractals to study

real-world phenomena has provided a new way of analyzing the world.

Finally, as we shall see in Chapter IV, a primary use of fractals is to classify

and analyze chaotic dynamical systems.

The primary references for this chapter are Barnsley (1988) and Falconer

(1990). While the presentation most closely follows that of Barnsley, a more

rigorous mathematical development of most of the results can be found in

Falconer. Additionally, the article by Harrison (1989) covers much of the

same material, while many of the examples presented here are from Cherbit

(1991).

Much of the current literature differs in the precise definition of a fractal,

so our approach is to develop the setting for the space in which fractals exist.

Then we provide many examples of fractals in that setting. This app roach

provides a good initial understanding of fractals without the expense

involved in achieving a thorough understanding of their elusive definition.
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A useful, although incomplete, definition of a fractal is that "a fractal is a

fixed point of a certain kind of transformation on the space (M(X), h(d))."

Thus, we must first define the set {(X) and the distance function h(d).

(*E(X), h(d)) is a metric space obtained from a complete metric space (X, d),

where the points in L(X) are dosed, bounded, nonempty subsets of X, and

where h(d) is a distance function based on the metric d, (which we define

shortly). The points in L(X) are called the "compact" subsets of X. To avoid

the necessity of employing concepts from advanced calculus, we consider only

Euclidean spaces where the compact sets are the dosed and bounded subsets.

Consider the Euclidean plane (R2, dE). We denote by WL(R 2) the

collection of all dosed and bounded subsets of R2, excluding the empty set.

Hence, the dosed unit square [0, 1]X[O, 1] belongs to W(R2), as does the origin;

however, the interval (0, 1)X{0) is not an element in WL(R2) since it is not a

dosed subset of R2. Clearly, the union of any two elements in 3,(R2) again

belongs to K(R2). The intersection of two elements in W(R2) is not

necessarily an element of W(R2) as the intersection may be empty.

In order to create a metric space out of the set KL(R 2), a distance function

(metric) is required that relates any two elements of iL(R 2) to a nonnegative

real number. To this end the concept of dilation is helpful. Given any dosed

subset A of R2 and e > 0, the e-dilation of A is defined to be the set of all

points x in R2 such that the smallest Euclidean distance between x and any

point in the set A is less than or equal to e; i.e., the e-dilation of A is the set

{x: dE(x, A) 5 e). For example, the e-dilation of the origin is simply the dosed

disc with radius E. The e-dilation of the unit square (0, 1]X[0, 1] with e = 1/2

is shown in Figure 3.1. The points of the square also belong to its e-dilation.
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Figure 3.1 The c-dilation of the unit square with e = 1/2.

We now define the distance from an element A in K(R2) to an element

B in K(R2) as the number dh(A, B) representing the smallest e such that

every point in B is covered by the e-dilation of the element A. In other

words, dh(A, B) = min(e: y e (the e-dilation of A) V y e B). Clearly, dh

exhibits the second and third properties of a metric from the original

definition. However, as shown in Figure 3.2, it is not symmetric since

dh(A, B) * dh(B, A) in general. To remedy this difficulty, we define h(A, B) =

max(dh(A, B), dh(B, A)). The number h(A, B) does satisfy the properties of a

metric for points in the set ;(R2), and is referred to as the Hausdorff distance.

Now the set IL(R 2) together with the metric h(A, B) is a metric space. It is

denoted by (M(R2), h(d)), or for purposes of simplicity just ILE, and we refer to

it as the Hausdorff-metric space. We remark that if the metric space (X, d) is

complete, then the associated Hausdorff-metric space MM(X), h(d)) is also

complete. In particular, IL is complete since X = R2 is complete.
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Figure 3.2 The distances dh(AB) and dh(BA) are not equal in general.

B. CONTRACTION MAPPINGS

In order to generate fractals geometrically we need to be familiar with the

concept of contraction mappings. The results of this section are presented in

the setting of a general metric space. However, we concentrate our efforts on

three main spaces: the real line with the normal distance function, the

Euclidean plane, and the Hausdorff-metric space (W(R 2), h(dE)).

A mapping f: X--X is said to be acontraction mapping if there exists a

constant 0 < s < 1 such that d(f(x), f(y)) < s(d(x, y)) for all x, y e X. The

number s is called the contractivity factor for f. We prove shortly that a

contraction mapping is always continuous. Under a contraction, any two

points in the space that begin a distance D apart will be moved to within a

distance sD of each other. A key result concerning contraction mappings,
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"and one which is critical when constructing fractals as subsets of the

Hausdorff-metric space K, is discussed next.

THE CONTRACTION MAPPING THEOREM.

If f: X--X is a contraction defined on a complete metric space (X, d), then f

has a unique fixed point xf e X. Furthermore, for any point x e X, the

sequence fn(x) converges to xf.

To prove this we first need the following results.

THEOREM. If f is a contraction, then it is continuous.

PROOF. If we let s be the contractivity factor of f, and if e > 0 is given, then

choosing 8 = e/s yields d(x, y) < 8 * d(f(x), f(y)) S s(d(x, y)) < s(e/s) = e. This

shows that f is continuous.

LEMMA. If f is a contraction with contractivity factor s, then for a fixed x

and m < n, d(fn(x), fMo(x)) s stud(x, fnTnl(x)).

PROOF. The proof follows immediately from the contractivity factor s, and

the principle of mathematical induction.

PROOF OF THE CONTRACTION MAPPING THEOREM.

Let x0 be an arbitrary point in the complete metric space (X, d), and let

f: X-4X be a contraction mapping such that xj = f(xo), x2 = f(xi) = f2(xo), and in

general, Xn = f(xn-l) = ff(x0). For positive integers m and n such that m < n,

we have
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d(xn, xn) = d(fm(xo), fP(xo)) = d(fMXxo), fM(fI-m(xo)))

< smd(xO, fI-m(xo)) = smd(xo, xr-m)

<: sm[d(xo, xj) + d(xi, x2) +. .. + d(xnk-1, xn-m)]

(by the triangle inequality of d)

< smd(xo, xi)[1 + s + s2+.. .+ sn-D- 1 ]

(by applying the lemma to each term)

< [sm/(1 - s)ld(xo, xj) (by the geometric series).

Since s < 1, sin-4 0, hence d(xm, xn)--O. Since X is a complete metric space,

xn--xf for some xf e X, so the sequence (fn(xo)) converges to the point xf for

any xo in the space. To show that xf is a fixed point: since f is a continuous

function, f(xf) = f(lim Xn) = limr f(xn) = limr Xn+l = xf. Therefore, xf is a fixed

point of f.

To show that xf is the only fixed point of f, assume that y is also a fixed

point. Then d(xf, y) = d(f(xf), f(y)) < sd(xf, y). Since s < 1 and d a 0, this

implies that d(xf, y) - 0, so xf = y, completing the proof.

The importance of the contraction mapping theorem will become

apparent when fractals are created through iterated function systems. When

we find a point in the space that is a fixed point under a contraction mapping,

we then know it is unique (hence we will refer to "the" fixed point of the

mapping). Furthermore, we know that any initial point converges to the

fixed point under iteration of f.
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C. AFFINE TRANSFORMATIONS OF THE PLANE

Affine mappings were defined earlier as functions of the form

fWx) = ax + b. In R2, we change our notation slightly and write an affine

transformation as w(x) = Ax + t, where x is a point in R2 (a column two-

vector), A is a 2X2 matrix, and t is a (fixed) vector in R2. We frequently

use the form

w(x) =w[iJ2=[a b] J÷:=Ax+t.x]', + [el ,

The mapping w(x) = Ax is called a linear transformation, and it takes any

parallelogram with one vertex at the origin into another parallelogram with a

vertex at the origin, provided that the determinant of A is not zero (that is,

A is nonsingular). Notice that the origin remains fixed under any linear

transformation. A result from linear algebra is that the matrix A can be

written in the form

[a bi r cosOl -r2sin92 ] 1
LC d][ r1sinO1  r2cosD2 J

where the point (a, c) has polar coordinates (ri, 01) and the point (b, d) has

polar coordinates (r2, 02 + x/2). The transformation w(x) = Ax "deforms"

the space R2 relative to the origin. By deform, we refer to the result from

linear algebra that any linear transformation can be expressed as a succession

of shears, compressions, expansions, and rotations of the space. The result of

adding the vector t to a point in R2 shifts that point by the magnitude and

direction of t, so an affine transformation of the plane can be thought of as a
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deformation (shearing, shrinking/stretching and rotating) followed by a

translation. Figure 3.3 shows the result of the affine transformation

wjjiJ,=[ 2 _O][x2,]+[-2]

onthetriangle T withvertices A = (0, 1), B = (1, 1), and C = (1, 0), where A',

B', and C are the images of A, B, and C under w, respectively.

x x2,

AtA
1/2

0 1 x -2 -1 0 1

Figure 33 An affine transformation of a triangle.

We now consider several special affine transformations. From the

representation in polar coordinates Eq. (1) above, if ri = r2 = r, and 01 02= 0,

we say the transformation is a similitude, and write it in the form

SLrsin0 rcosOL2

or,

[:lr.o :si,,"lrxin l+[e
{X2] [rsin0 -rcoseJ[ x2 J1 L
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"A similitude scales any image in R2 by the same factor r in each component

direction, rotates it by the angle 6, and then translates it by the magnitude and

direction of the vector t. Recall from linear algebra that the transformation

[cosO -sin
sinO cosOJ

is a rotation, and the transformation

is a reflection across the x-axis in R2. Both of these transformations behave as

one would expect, based on their names. Figure 3.4 shows the transformation

[] [cos'z/2) -sin~x/2) ][x] (2)
LJ sin(r/2) cos(7i'2 jX2

of the unit square which is a rotation with 0 = x/2- Figure 3.5 shows the

transformation

W[2]= 0,][:21 '](3
of the unit square which is a reflection about the x axis. Being familiar with

both reflections and rotations is very useful when creating fractals.

The action of w(x) = Ax + t can be determined by evaluating its effect on any

point (xj, x2) in the plane. However, it is sometimes more useful to

determine which affine transformation has caused a particular (observed)

change to a given set of points. The beauty of affine transformations is that

they are uniquely determined by their action on any three non-collinear
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2 x2

C D' B'1

A C' A'
0 11 1 x 1Ox 1

Figure 3.4 A rotation of the unit square by the transformation in Eq. (2).

X2

0 __ x1
C D -N' B'

A E C' D'
S1O 1

Figure 3.5 A reflection of the unit square by the transformation in Eq. (3).

points in the plane. To see this, start with any three points (xi, x2), (yi, y2),

and (zl, z2) and note their movement under an (unknown) affine

transformation to the new points (xj', x2'), (y0', y2'), and (zl', z2'). The

coefficients a, b, c, d, e, and f of the transformation can be determined from

the system of linear equations

xla + x2b + e = Xl',

yja + y2b + e = yI',

zla + z2b + e = zl',
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x1 c + x2d + f = x2 ,

yic + y2d + f = y2',

zlc + z2d + f = z2'.

Because the points are non-collinear, the matrix of the coefficients is

nonsingular and the system has a unique solution. An example follows.

EXAMPLE. Using the example in Figure 3.3, the transformation on the

triangle transforming the points (1, 0), (1, 1), and (0, 1) to (-2, 1/2), (0, 1/2),

and (0, 1) respectively yields the following system of equations:

(0)a + (1)b + e = -2,

()a + (1)b + e = 0,

(l)a + (O)b + e = 0,

(O)c + (1)d + f = 1/2,

(1)c + (1)d + f = 1/2,

(1)c + (0)d + f = I.

Solving for the coefficients a through f yields a = 2, b = ,c0, d =-1/2,

e = -2, and f = 1, hence, the affine transformation is given by

w_,,2][x2X 0 IIXI

D. CONTRACTION MAPPINGS OF THE SPACE X00

Given n continuous maps of a metric space wl, w2,..., Wn: X-+X, we

construct a map W of the associated space 9 by considering

W(x) = wl(x) U w2(x) U... U wn(x),
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"where x is any point in the space R, i.e., x is a closed, bounded, nonempty

subset of the original metric space. For x e K, we define Wi(X) = {wi(y): y e x

c X). We state here that the mapping W maps 1C to itself. This fact is based

on two important results from advanced calculus, which we state but do not

prove. The first result is that continuous images of compact sets are compact,

so that each wi maps K to itself. The second is that the finite union of

compact sets is compact. Thus, W maps K to itself, as claimed. For a simple

illustration of this concept, let n = 2 and X = R, and consider the maps on R

defined by wl(x) = x and w2(x) = 2x. If we start with the singleton compact

set x = (1), we have W(1) = wi({l)) u w2((1)) = (1) u (2) = (1, 2).

We next iterate the map W. The set of points W"(x) grows quite rapidly

as n increases. To see this, consider the same example used above with n = 2.

Then W2(x) = W(W(x)) = W(wj(x) u w2(x)) = wl(wl(x) u w2(x)) u w2(wl(x) v

W2(X)) = WI(WI(x)) U wl(w2(x)) U W2(Wl(X)) V W2(W2(X)). Using wl and W2

as above, and again starting with x = (1), we have W2({1}) W(1, 2)) =

(1, 2) u (2,4) = (1, 2,4). Similarly, W3 (1)) = (1, 2,4) u (2,4,8) = (1, 2,4, 8).

Note that wj(w2(x)) = w2(wl(x)) because wl and w2 are linear

transformations on R, which commute. For notational convenience, we

shall not distinguish between the notation x = 1 and x = (1) for the space

K(R) includes sets of singleton points.

We use the abbreviated notation wi(w1(x)) = Wij(x) etc. Then,

W1 = W1 u w2; W2 = WI1 Uw12 U w21 U w22, and W3 = WllIl Uw112 Uw121 U

W122 U W211 U W212 V W221 u w222. These subscripts may look familiar. We

are building, in this way, an iterated function system in one-to-one

correspondence with the code space 12. To make this clear, we let each I in
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"our subscripts correspond to the 0 in code space, and let each 2 in our

subscripts correspond to the 1 in code space. Then, the iterate Wijk... is in

direct correspondence with the point i-1, i-i, k-1,... in Y,2. We could have

emphasized this more had we named our contractions wo and wi.

However, we save the designation wo for a specific use later on. Similarly, if

W is the union of n mappings, then the subscripts are analogous to the

points in In after infinite iteration. This concept proves quite useful when

we identify points on fractals through an addressing scheme.

Notice that the infinite iteration W"(1) in our simple example produces

the set (1, 2, 4, 8, 16,...). While the dynamics of this particular iterated

function system are not very exciting, when each wi is a contraction with

associated contractivity factor si the results do become much more

interesting, as we discuss next.

To discuss contraction mappings on the space 1E, we need the following

two theorems.

THEOREM. If a mapping on a metric space w. X--X is a contraction with

contractivity factor s, then w- L(X)--§L(X) is also a contraction with contrac-

tivity factor s.

PROOF. Let B, C e 1E. Then

dh(w(B), w(C)) = min(e{ y e (the e-dilation of w(B)) V y e w(C)}

< minise: y e (the e-dilation of B) V y reC}

=s min(e: y e (the e-dilation of B) V y e CI

=s dh(B, C).

Similarly, dh(w(C), w(B)) •s dh(C, B).
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"Therefore, h(w(B), w(C)) < s h(B, C), completing the proof.

THEOREM. Let wl, w2, , wn be contractions on the space Ii with

contractivity factors sj, s2, ... , sn. Define W: It-&# by

W(B) = wl(B) u w2(B) u... u wn(B)

for each B c 9. Then W is a contraction mapping on 91 with contractivity

factor s = maxfsi: i = 1, 2,..., ).

PROOF. We prove this for the case n = 2. The rest follows by induction.

Let B, Ce H. Then

H(W(B), W(C)) = h(wI(B) u w2(B), wj(C) U w2(C))

< max(h(wl(B), wI(C)), h(w2(B), w2(C)))

< maxfslh(B, C), s2h(B, C)) = sh(B, C).

A simple exercise shows why the first inequality holds. This completes the

proof.

Figure 3.6 shows two contractions on the unit square in R2, wi contracts by

1/2 in the xI direction, and w2 contracts by 1/4 in the x2 direction. Their

union has a contractivity factor of 1/2 by the previous theorem.

Since W is a contraction on the complete metric space K(X) we know

that it has a unique fixed point in K00, which is a dosed, bounded, non-

empty subset of the space X. By the Contraction Mapping Theorem, all points

in KL tend to this fixed point under infinite iteration of W. This unique

fixed point is called the attractor of W, and frequently exhibits very interesting

properties.
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S Wl(S)

x 1 xx 1 x
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w2 (S) W1 (W2 (S)) =

W 2(W1 (S))

x 1 1

Figure 3.6 The union of two contractions of the unit square.

E. CREATING FRACTALS THROUGH ITERATED FUNCTION SYSTEMS

1. The Cantor Set

We are now prepared to construct fractals using affine transfor-

mations and the Contraction Mapping Theorem. We start with the simplest

setting, namely the unit interval, and construct a fractal with which we are

already familiar.

Consider the union of two affine transformations of the real line R,

given by W(x) = wl(x) u w2(x), where wl(x) = x/3, and w2(x) = x/3 + 2/3. If

we first restrict our attention to the unit interval [0, 11, then under the first

iteration of wi the unit interval is shrunk by 1/3 towards the origin such

that [0, 1]-+[0, 1/31. Under the first iteration of w2 the unit interval is shrunk

by 1/3 and then translated to the right by 2/3 so that [0, 1]-+[2/3, 1]. Note

33



that the effect of W on [0, 1] is the removal of the open middle third of the

unit interval, the first step in constructing the Cantor "middle thirds" set.

Under the second iteration W2, the mappings wI and w2 now act on

the subsets [0, 1/31 and [2/3, 1] of the unit interval, so that W2[0, 1] = wlO[0, 1] u

W1210, 1] u W2110, 1] uw[220, 1]. This can be written as wj[0, 1/3] u wj[2/3, 1] u

w2[0,1/3] u w2[2/3, 11. Since wj[0, 1/31 = [0,1/91, wj12/3,1] = [2/9,1/31,

w2[0,1/31 = [2/3,7/91, and w2[2/3, 11 = [8/9,11, we obtain W2[0, 11 =

[0,1/91 u [2/9,1/31 u [2/3,7/91 u [8/9,11. This procedure has the same effect as

removing the open middle third of each interval [0, 1/3] and [2/3, 1].

Using a similar analysis, W3[0, 11 again removes the open middle

third of each of the four intervals produced from W2, and continuing in this

manner results in the construction of the Cantor middle-thirds set (see Figure

3.7).

0

Wl1O,.11 w2 [O, 1]

W 1 W 1 2  W2 1  W2 2

will w1, 1 2  WI 2 1 W12 2  211 w212__ w221 w222

Figure 3.7 Creating the Cantor set through an iterated function system (IFS).

The above construction is perhaps the simplest example of a fractal.

Further examination reveals that this set has some interesting properties.

First, consider the set of points that are fixed under the map W. Note that the
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.fixed point of wl is 0, since (1/3)(0) = 0, and that the fixed point of w2 is 1,

since (1/3)(1) + 2/3 = 1. Since each of these mappings is a contraction of the

real line, each has a unique fixed point by the contraction mapping theorem.

However, under the union of these maps W = wI U W2, the endpoints of the

intervals we constructed, 1/3,2/3,1/9,2/9,7/9,8/9,1/27,..., also remain in

the set after each iteration of W. While we restricted our attention to the

unit interval, we note that each contraction wi is defined on the real line and

their union is a contraction on the space W(R). Hence, if we can find a closed,

bounded subset of the real line whose image under W is itself, we know it is

the unique fixed point of the mapping W. The classical Cantor set is such a

point, because taking the contraction W of the Cantor set again yields the

Cantor set. To see this, recall that in our construction of the Cantor set each

subinterval contains a smaller copy of the whole set because of the infinite

iteration we used. Likewise, since W maps the unit interval to [0, 1/3] and

[2/3, 11, each subinterval also contains a smaller copy of the whole interval.

Since the Cantor set is the fixed point of this iterated function system (IFS), we

refer to it as the attractor of W.

This illustrates a property of fractals known as self-similarity. If we

examine the interval [0, 1/3] in the construction of the Cantor set, we see that

it is a scaled copy of the original unit interval. Likewise, if we examine any

subinterval of the unit interval, we observe the same result. This is a unique

property of the infinite iteration scheme used to construct the Cantor set.

Similarly it is the result of iterating W an infinite number of times. This

self-similarity characteristic of fractals is very useful in applications to

computer graphics.
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Because it was known ahead of time that the attractor of W would be

contained entirely within the unit interval, to simplify the discussion we

based our previous analysis on mappings of the unit interval W: [0, 11--[0, 11.

Now consider the result of mapping a different compact (i.e., dosed and

bounded) subset of the real line. From the Contraction Mapping Theorem,

no matter which nonempty compact subset of the real line we begin with,

infinite iteration of W always produces the Cantor set. Although we proved

this principle formally, it certainly is not intuitively obvious. In the next

section we illustrate this idea with an example in R2, where the geometry can

be better appreciated.

The question now arises, what happens to the entire real line under

iteration by W? It is dear that W(-"o, @0) = (-", oo), which appears to be a fixed

point of W. However, the set (-w., e) is not in the space M(R) since points

in the space *(R) are dosed and bounded subsets of R, but (-.,-.) is not

bounded.

This thorough examination of the Cantor set as a fractal produced by

the iterated function system W provides the basis for similar results in

higher dimensions. The principles remain unchanged and adding a

dimension yields ever more interesting results.

2. Fractals in Two Dimensions

We now lift the setting from the real line to the Euclidean plane R2

and the space (W(R2), h(d)) associated with it. Consider the following three

contractions of the plane:
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W 32]=[ ][ J [ +[ 112[X 0 1 r/ ,
W3[L2']-[" o ][X2.]+[ 0•

Let W = wl u w2 v w3. Then W is a contraction on K(R2), and has a unique

fixed point, or attractor. To find the attractor, consider the action of W on

the unit right triangle T with vertices (0, 0), (1, 0), and (0, 1). Since T is a

dosed and bounded, nonempty subset of R2, it is a point in K(R 2). Each of

the maps wl, w2, and w3, shrinks any point in R2 towards the origin by a

factor of 1/2 in the directions of each coordinate axis. The map w2 shifts

each point 1/2 unit to the right as well, while w3 shifts the result 1/2 unit

upwards.

Figure 3.8 shows T and the result of WM. Notice that the result of WM is

to remove a "middle third" triangle from the original triangle T. Again,

iterating T under W yields the results shown in Figure 3.9, displaying the

remaining triangles from their previous iterations with the middle thirds

removed.

Continuing to iterate W, we see that the fixed point of W is

obtained by continually removing the middle third of each subtriangle from

the original triangle T. This attractor is shown in Figure 3.10 and is called the

Sierpinski triangle (or Sierpinski gasket).
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x x2

The Unit Triangle T 1 W(T)

Figure 3.8 The effect of W on the unit triangle.

X A

1N

x

Figure 3.9 The effect of W2 on the unit triangle.

The same results observed for the Cantor set in one dimension apply

to the Sierpinski triangle in two dimensions. The Sierpinski triangle has

infinite detail, and is self similar: each subtriangle contains a scaled copy of

the original unit triangle. Furthermore, while we used the unit right triangle
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"T as the starting point, by the Contraction Mapping Theorem any point in the

space Wfl(R2) converges to the Sierpinski triangle under infinite iteration of

W. Figure 3.11 shows how the unit square with infinite iteration under W

also yields the Sierpinski triangle.

Figure 3.12 shows how the point (1, 1) starts away from the attractor,

but under iteration of W eventually converges to points on the attractor.

Figure 3.13 shows the effect of W6(S) on the unit square.

Figure 3.10 The Sierpinski triangle.
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Figure 3.11 Creating the Sierpinski triangle by iterating the unit square.
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Figure 3.12 The orbit of the point (1, 1) under iteration of W.

Figure 3.13 The effect of W6(S) on the unit square.
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* , 3. Condensation Sets

So far we have only considered examples of contractions where

0 < s < 1. We will now consider contractions where the contractivity factor is

s = 0. Such contractions are called condensations, and in one dimension this

corresponds to fRx) = c where c is a constant It is clear that no matter what

two points we start with, the distance between their first iterates under f is 0,

since c - c = 0, so that f is a contraction.

In the space {(X), wo: H(X)-+H(X) is a condensation if wo(x) = B for

all x in *E(X), where B is some fixed point in 1(X). If we take a contraction

mapping of the space K, W = wi u...u wn, and form the union of it with wo,

where wo is a condensation such that W'= W u wo, then W' will be a

contraction with the same contractivity factor as W. To see this, consider that

the contractivity factor of W is s = max(s1, s2,., SIn, and that the

contractivity factor of W is s' = max(O, sl, s2,..., sn} = s.

Although the contractivity factors of the maps W and W are the

same, their dynamics are quite different. Since every iteration of W maps

points to the point B, the attractor of this iterated function system can be

thought of as the infinite set of every iteration of B under W.

As an example, consider the one-dimensional case with the two

functions wi(x). = x/2 and wo(x) = 1 on the real line. The map wl is a

contraction, and wo is a condensation, and their fixed points are 0 and I

respectively. If we start with a point on the real line, for example 0, and

iterate it under W = wo u wl, we see that W(0) = (0, 1), W2(0) = [0,1,1/2),

W3(0) = 0,1,1/2,1/4), and Wn(O) = (0, 1, 1/2,1/4,...,1/2'I). Clearly, this
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-iterated function system generates an attractor which consists of every iterate

of the condensation set (1) under the contraction wi(x) = x/2.

4. A Fractal Tree

We now use the concept of condensation sets to construct a fractal

image. We first let the set B = (xj, x2): -0.1 s xi r 0.1; 0: O x2 5 1). In other

words, B is the filled rectangle with height I and width .2 with base centered

at the origin. Now define the transformations

wO[xi]=B,

[2]=[7csn4 -.75sim(xI4) I[x2,] +01
x .75sin(x/4) .75cos(r,4)JX 2

W[X2ii-I .75cos(-I4) -.75sin(,r14)][x,].[O0

X .75osi(-Wr4) -.75os(-u./4) x+ [
The transformations wi and w2 shrink any image by three-fourths in the

direction of both axes, w1 rotates it 45 clockwise and w2 rotates it 45"

counterclockwise, and then both transformations shift the image up one unit.

The transformation wo is a condensation that maps any point to the set B.

Ifwelet W=wouwluw2, and we iterate the origin under W, we

see that W(0, 0) yields the set B, W2 yields the set B together with the two

condensed, rotated, shifted copies of B, and W3 yields the set B together

with two condensed, rotated, and shifted copies of the image of W2. If we

continue iterating, we see that every iteration yields the set B together with
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two condensed, rotated, and shifted copies of the previous iteration. The first

seven iterations of the origin under W are shown in Figure 3.14, which is

the beginning of a fractal "tree."

Figure 3.14 A fractal tree.
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Another way of generating a fractal tree is through an iterated

function system without condensation. If we consider the transformations

w x2j] = -20 x2] [.045

W[2 .1 sin(XI4) .25COS(W/4 .5]

W3 [xi: [ .lcos(-x/4) -.25sin(-/4)lr,2J.,[.51

3 [] = si([ /4 .25cos(-x/4) xL~2 .5[
and we consider the effect of W = wl v w2 u w3 on the unit square, we see

the result shown in Figure 3.15. If we continue to iterate W, we produce

the attractor of this iterated function system, which is a fractal tree with a

similar shape to the one in Figure 3.14. However, unlike the tree with

condensation, the trunk and branches of this tree are not solid, in fact, each

contains a condensed copy of the entire attractor. These detailed images are

not only aesthetically pleasing, but they lead to an important application of

fractals. To store these images in a computer using traditional means would

require hundreds of lines of code; however, we have used just 18 numbers

(three two-by-two matrices and three two-vectors) to record all of the

information required to produce these images. This efficient way of recording

information has led to important applications of fractal geometry, as the next

section shows.
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Figure 3.15 The action of W on the unit square.

F. APPLICATIONS OF FRACrALS TO COMPUT GRAPIHCS

Pictures that are infinitely detailed and self similar can be stored in a

computer with very small amounts of information. For example, in the case

of the fractal tree in the last section, only 18 numbers were required. But what

if an image is not self similar? Is it still possible to use contraction mappings

to store the information? The remarkable answer is "yes." Perhaps even

more surprising, this procedure can be achieved to any desired degree of

accuracy.

A formal description of using contractive iterated function systems to

store graphical information can be found in Barnsley (1988) or Falconer (1990).

Instead of presenting the proofs here, we give an intuitive treatment of the

technique through an example. Then we show how any desired degree of

accuracy can be attained.
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Recall that affine transformations can have many different actions on a

set, including shearing, shrinking or stretching, rotating, and shifting.

Suppose we have an image we wish to reproduce; let that be our attractor.

We then search for affine transformations that could paste distorted copies of

the set back on top of itself to approximate the original image as closely as

possible. This is done through the "collage theorem" due to Barnsley. We

present an example here.

Consider the image in Figure 3.16. While this figure is not self similar,

we can approximate it by making smaller copies of it (through contractions)

and "pasting" them back on itself (through affine transformations) to cover,

Figure 3.16 A nonself-similar image.
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as much as possible, the original figure. One such covering is shown in

Figure 3.17. The four corners of the original image and their movement

under the coverings are indicated by the letters A through D. Note that a

certain amount of overlapping of the covering is required, for if this were

just-touching or totally disconnected, the attractor would be too sparse to

represent the original image.

C 1C 1 A 2C D
2A

3B 3D

1 1 2 B2D

112 2 DI
A 5A 4A s 1B 3 3C B

Figure 3.17 Covering an image with transformed copies of itself.

Recalling that an affine transformation is uniquely determined by its

action on any three noncollinear points, we could easily determine the actual

transformations required to produce the seven mappings indicated in the

figure. Under repeated iteration of this iterated function system, we could

then reproduce the image in a similar way as that used to produce other

attractors, with only 42 pieces of data, since each affine transformation

requires six numbers.
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But notice that the attractor of this iterated function system is not the

original image, since its boundaries are infinitely detailed, as opposed to the

solid boundaries in the original image (see Figure 3.18). This "fuzziness"

seems to contradict the earlier claim that we could approximate a computer

image to any degree of accuracy. But the above system used only seven

transformations. Noting that any computer image is displayed by a finite

number of pixels, which are either on or off, we could push this technique to

its extreme to reproduce exactly the original image. That is, we could

condense the entire set down to the size of one pixel, and then shift that pixel

through affine transformations to every pixel in the original image. This will

indeed give an exact reproduction of the original image. However, it would

require six numbers for every pixel in the image.

Figure 3.18 The attractor with a fractal-like boundary.
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While this technique obviously defeats the concept of efficient storage of

information, it nevertheless shows that we can achieve any desired degree of

accuracy. Depending on the requirements of a given project, iterated function

systems and their attractors can frequently be used to achieve the desired

degree of accuracy much more efficiently than the traditional methods of

storing information.

So far we have claimed that only the information contained in the affine

transformations is needed to use this technique. In fact, we also require a

program to produce the image based on the input. However, these are quite

common and there are a variety of algorithms that produce the desired

results. Thus, in a situation where many different figures must be recorded, a

single program will suffice for creating the graphics once the transformations

are stored. It follows that this method is more efficient than many traditional

computer graphics techniques.

G. THE ADDRESSES OF POINTS ON FRACrALS

A useful technique in analyzing fractals is to address every point on an

attractor by the sequence of transformations that led to that point being in the

attractor. This leads to the classification of iterated function systems as being

"totally disconnected," "just touching," or "overlapping," and helps us

analyze chaotic dynamics on fractals in Chapter IV.

We will start with transformations of the real line to illustrate this

concept in the simplest setting possible. Consider the system wO(x) = x/3 and

w2(x) = x/3 + 2/3 (the reason for selecting these subscripts will soon become

apparent). We already know that repeated iteration of W = wo u w2 yields
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"the Cantor middle-thirds set as an attractor. (Recall that there are no intervals

in the Cantor set, and that the intersection of wo and w2 applied to the unit

interval, or any subset thereof, is empty). Considering the iteration of W on

the unit interval, we now begin to address the points in its attractor.

Under the first iteration of W, the unit interval is mapped to the interval

[0,1/3] by wo and to [2/3,1] by w2. Hence, we begin the address of every

point in [0, 1/31 with 0, and we begin the address of every point in [2/3, 11

with 2. Under the second iteration of W, the interval [0, 1/31 is mapped to

[0,1/9] by wo and to [2/3,7/91 by w2, whereas the interval [2/3, 1] is

mapped to [2/9,1/31 by wo and to [8/9,11 by w2. Hence, the second number

in the address of all points in [0,1/9] and [2/3, 7/91 is 0, and the second

number in the address of all points in [2/9,1/31 and [8/9,11 is 2. Figure 3.19

shows the first three steps of this process, and the beginning of the resulting

addresses of every point in the Cantor set.

0 1

0 2

00 02 20 22

000 002 020 022 200 202 220 222

Figure 3.19 Addressing the attractor of an iterated function system.

It is dear that under infinite iteration, every point in the Cantor set has a

unique address consisting of an infinite string of Os and 2s. Note that the
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origin has the address 000... and that 1 has the address 222... What we

have by the convenient selection of 0 and 2 as the subscripts is that every

point in the Cantor set is addressed by its ternary expansion, as described in

Chapter II.

The addressing scheme used here is not unique, as we could have also

chosen 0 and 1 as subscripts resulting in every point in the Cantor set

having an address from the code space £2. Again, note that every point in

£2 would be an address of a point in the Cantor set, and that any dynamics we

performed on the code space £2 could easily be applied to the Cantor set.

This one-to-one correspondence between code space and fractals is very useful

in the discussion of chaotic dynamics on attractors of iterated function

systems. (As an aside, we could have just as easily selected 1 and 2 as

subscripts to demonstrate further that an addressing scheme is not unique.

Nevertheless, all of these systems have a one-to-one correspondence between

them.)

Notice that every point in the Cantor set has a unique address associated

with it. This characteristic allows us to classify the iterated function system

W = wo u w2 as being totally disconnected. While the attracting set (the

Cantor set) is disconnected, we associate the classification "totally

disconnected" not with the attractor, but rather with the iterated function

system that produced it. The reason for this will become apparent when we

look at "just touching" and "overlapping" iterated function systems which

have the same set as their attractor.

Now consider the iterated function system W = wi u w2, where

wi(x) = x/2 and w2(x) = x/2 + 1/2. The unique fixed point (and hence the
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attractor) of this system is clearly the unit interval. So if we consider the

action of this system on [0, 1], we can build addresses for every point in that

interval. Starting with [0,1], we see that wl maps it to [0,1/21 so we assign

to that interval the first address of 1, and similarly points in [1/2, 1] have the

first address 2. Already we can see that there is some ambiguity with the

point 1/2, since it appears to be receiving two distinct addresses. Continuing,

we see that points in the interval [0, 1/41 have addresses starting with 11,

while points in the intervals [1/4,1/21, [1/2,3/41, and [3/4,11 have addresses

12, 21, and 22, respectively. Now the points 1/4 and 3/4 have been added

to the list of points with dual representations. Figure 3.20 shows the first

three iterations of this addressing scheme.

0 114 1/2 3/4 1

1 2

11 12 21 22

111 121 211 221-112-122 - 212-222

Figure 3.20 Addressing the attractor of a just-touching IFS.

Again, it is dear that every point in the unit interval receives an address,

but points of the form i/2n, i = 1, 2,3,..., 2n - 1 have dual representations

under this scheme. The set of points where the addresses touch, although

infinite, is countable (i.e., is in one-to-one correspondence with the natural
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numbers) since at every step we add a finite number of points with dual

addresses. Also, notice that no intervals have dual addresses, since between

every pair of points with dual addresses, there are points with unique

addresses. Iterated function systems with this characteristic are classified as

just-touching. This fits the intuitive concept of this definition since the

results of iterating the attractor [0, 1] under w, and w2 results in two intervals

which "just touch" at one point.

Finally, we consider the system W = wi u w2 where wl(x) = 2x/3 and

w2(x) - 2x/3 + 1/3. Again, the attractor of this system is dearly [0,11, but

when we address points in the attractor, we encounter considerable

ambiguity. Under the first iteration of W applied to [0, 1], we see that the

interval [0,2/3] gets the address 1, while the interval [1/3,1] gets the address

2. Here an entire interval [1/3, 2/3] of points has a dual address after just the

first iteration. Moreover, at every step we add intervals with a similar

ambiguity. The first three steps in this addressing scheme are shown in

Figure 3.21. Notice that in order to remove the ambiguity of the overlapping

addresses, we have to lift" the unit interval into a second dimension as the

figure shows.

The ambiguity in this addressing system is much greater than for the just-

touching iterated function system. In fact, at every step an uncountable

number of points with multiple addresses is obtained. Here, the number of

points with multiple addresses far outnumbers the points with unique

addresses. What is more, for this system, the only points with unique

addresses are 0 and 1. This feature leads to the intuitive definition of an

overlapping iterated function system. Notice that each iteration of wl and
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"w2 results in an interval where different addresses overlap. Because the

attractor of this system is the same as in the example of a just-touching

iterated function system, it should now be clear why the classifications

"totally disconnected," "just touching," and "overlapping" are applied to the

iterated function system rather then to the attractor itself.

0 1/3 2/3 1

12

12

111 12 121

122
Ill 112. 12 122

211 212
21222

Figure 3.21 Addressing the attractor of an overlapping IFS.

With the concept of addressing points on attractors and classifying

iterated function systems in a simple one-dimensional setting, let us now

turn to a two- dimensional example. Recall the iterated function system that

produced the Sierpinski triangle as an attractor:

[x2 0 1/2 I[x]Jjj

55



W3[J2'=[olnJ([X]+[ 01J,1

where W = wl u w2 u w3. Iterating the unit right triangle under W yields the

Sierpinski triangle by removing the "middle-thirds triangle" at every step.

Looking at just one iteration of W, we see that this is a just-touching iterated

function system: the image of wi intersects the image of w2 at (1/2, 0), the

images of w2 and w3 intersect at (1/2,1/2), and the images of wi and w3

intersect at (0, 1/2). An addressing scheme for the Sierpinski triangle is

shown in Figure 3.22.

33

3 3

Figure 3.22 An addressing scheme for the Sierpinski triangle.

As before, the vertices created at each step have two distinct

addresses. For example, the point (1/2,1/2) has the addresses 2333... and

3222.... The exceptions are the three original vertices which have the unique
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-addresses 111..., 222...,and 333.... Again, we could have chosen the

addresses to consist of Os, is, and 2s, to create a correspondence between the

Sierpinski triangle and code space 73. However, it is just as convenient to

create a modified code space r3 to be (xlx2x3...: xi e (1, 2, 3)). The metric

associated with this space 1-3 is

d(x, y) = x . ,O

i=l 41

so 1'3 is dearly in one-to-one correspondence with the Sierpinski triangle.

A more difficult addressing problem occurs with an overlapping

iterated function system in two dimensions. Recall that in an overlapping

iterated function system of the real line, we had to "lift" the attractor into a

second dimension to uniquely determine addresses. Similarly, in two

dimensions, we must lift the attractor into a third dimension to address its

points uniquely. For example, consider the overlapping iterated function

system of the plane W = wl u w2 u w3, where

rWi Xi _20 ir..ol
Wl[xJ=[Z/3 0Jx[J

W2[J-j" ]23[X]J+[01/3

X] _[2/3 0 ][x [l 0

W 0 2/3j[21.,j

The attractor for this iterated function system is the "filled"

Sierpinski triangle, or simply the unit right triangle. Figure 3.23 shows the

first iteration of W and how the iterates of wi, w2, and w3 overlap. Any

57



point along the xi-axis in the interval [1/3,2/3] has an address beginning

with a 1 or a 2, and entire regions of the plane have similar ambiguities.

3

lor3 2or3

1 2

1 or 2

Figure 3.23 Ambiguous addresses for the attractor of an overlapping IFS.

While points on the attractor always correspond to multiple

addresses, we would like to identify every possible address with a unique

point. This is useful, for example, when considering the dynamics of the shift

map on code space associated with the attractor of an iterated function system.

Developing such an addressing scheme in two dimensions for this attractor

would be extremely difficult. However, "lifting" the attractor into a third

dimension allows us to create an unambiguous address system for the

attractor. Figure 3.24 shows how the first iterate of W (from Figure 3.23) is

lifted into the third dimension. This removes the ambiguous regions from

Figure 3.23.

We now lift the entire attractor into the third dimension. To

accomplish this, cross the Euclidean plane with the unit interval [0, 1] which

is represented by its base four expansion so that every point in the interval is

represented by a number .xix2x3... where xi e (0, 1, 2, 3). By associating the
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'address of each iterate of W with its base four expansion, we see that we get a

Cantor-type set construction along the vertical axis when viewed from the

side. Since we used the subscripts 1, 2, and 3 for the iterated function system,

every number in [0, 1] that does not have a 0 in its base four expansion will

have an iterate associated with it. The result of this process, taken to three

iterates, is shown in figure 3.25. Having an addressing scheme such as this to

locate a unique point proves quite useful when we study chaotic dynamical

systems on fractals in Chapter IV.

Figure 3.24 Lifting an attractor into the third dimension.
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Figure 3.25 Addressing the lifted attractor of an overlapping IFS.

H. FRACTAL DIMENSION

One of the most useful concepts in the application of fractal geometry is

that of fractal dimension. Fractal dimension provides a measure of the size

or "dimension" of an object, whether it is the attractor of an iterated function

system, a more familiar geometric figure, or something arrived at through

collection of real-world data. Fractal dimension has worked its way into

many fields such as physics, meteorology, aeronautical engineering, and
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oceanography, and we provide some examples of these applications shortly.

To begin we develop this concept mathematically.

The fractal dimension of an object is the assignment of a number to the

object that represents how much space the object takes up in its ambient

space. We are all familiar with objects in one, two, or three dimensions. That

an object may have a non-integer or fractional dimension seems

counterintuitive. Nevertheless, you will see that the definition of fractal

dimension supports completely our intuitive concept of one, two or three

dimensional objects. With this in mind, we give some preliminary

definitions that are needed to develop the concept of fractal dimension.

Ane -ball about a point xo in a metric space is the set of all points in the

space within distance e > 0 from the point xO. Conventional notation for an

e-ball is B(xO, e) = (x: d(x, xo) < e). Notice that by using the "!" sign in the

definition, the e-balls in our discussion are dosed. While this notation may

be slightly unfamiliar, the concept certainly is not. For if we take the real line

with the standard distance function as ow inetric space, then B(1, 1/2) is

simply the dosed interval [0.5, 1.51. Furthermore, if the metric space is the

Euclidean plane R2, then B((0, 0),1) is simply the closed unit disc centered at

the origin.

Given a closed bounded nonempty subset of a metric space, we want to

cover that subset with balls of specified radius e. In the case of the real line, to

cover the unit interval with balls of radius 1/4 requires at least two (centered

at 1/4 and 3/4). We could use any number of such balls if we allow

overlapping. We are primarily interested in covering a set with the smallest

number of balls possible, so we define the integer N(A, E) to be the smallest
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"number of closed balls of radius e needed to cover the set A. Specifically, for

any set A in our metric space, we define N(A, e) to be the smallest positive

integer M such that
M
u B(xn, E) =)A,

n=1

for some distinct set of points {xn: n = 1, 2,..., M) in the metric space.

The Heine-Borel Theorem (see an advanced calculus text) guarantees that

we are always able to cover a dosed bounded set with a finite number of

c-balls. Since every set of positive integers has a smallest member, the

number N(A, e) uniquely exists.

We are now prepared to define fractal dimension. If we let A be a point

in the space K(X) (i.e., A is a dosed bounded nonempty subset of the metric

space X) the quantity D is defined as
D ffi ln(N(A, e))

£-,O In(1/•)

The number D, if it exists, is called the fractal dimension of A and is denoted

D(A).

Let us clarify this concept with some intuitive examples. First, consider a

point x in R2. No matter how small we choose e, we can always cover the

point x with a single ball of radius e, so that D(x) = lime..ln(N(x, e))/ln(1/e)

Slime-Oln(1)/ln(/I /) = 0. Hence, for any point x in R2, we see that its fractal

dimension is zero (which fits our intuitive concept of a point having zero

dimension).

Consider next the unit interval [0, 11 as a subset of the real line.

Recalling that in R, e-balls are the closed intervals of length 2e, we begin to
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cover [0, 1] with e-balls. If we let e = 1/2,1/4,1/8,.. ,1/2n,. •then the

number of intervals required to cover [0, 1] are 1, 2, 4,... , and 2n-1, respec-

tively. Clearly, n-ý- implies e-40, so D([0, 1]) - lime_-oln(N(A, e))/ln(1/e) =

limn...ln(2n-1)/in(2n) = limn-.4 (n-1)ln2/nln2 = limn_.(n - 1)/n = 1. Hence,

the fractal dimension of a line segment is 1, which is consistent with our

ordinary concept of dimension.

In the previous example we were very specific in the way we let E-.0.

This example leads us to an equivalent definition of fractal dimension. In the

same setting as before, let en = rn for 0 < r < 1 and n = 1, 2, 3,. Then

D(A) = limn_ in(N(A, En))/ln(1/En).

To show that these definitions are equivalent, let f(e) = Max(en: en < e), and

assume that e < r. Then f(e) • e: f(e)/r, and N(A, f(e)) ý N(A, e) a

N(A, f(£)/r). Since, for x > 1, ln(x) is a positive increasing function, we have
In(N(A, f(e)/r)) < ln(N(A, e)) l In(N(A, f(e)))

ln(1/f(e)) ln(I/E) In(r/f(l))

We can assume that N(A, e)--+o as e-*0, or the result follows immediately.

Considering the left side, and taking the limit as e-0O, since for some n,

f(e) = en, we have

lim4,In(N(A, f(E)fr))1 =im [ln(N(A, e,-i)).

a- ) ln(l/fe .i) J In(lI£e)

Similarly, the right side yields

EM ln(N(A, f(e)))i lim ln(N(A, PQ)

- l" -- -r - " - 63 l n (r/-

63



im[ ln(r.N(A, en)) 1 limrln(N(A, en)1
SI In() I+ - I II I II i il' i iEi) 

.
The pinching theorem from calculus establishes the equivalence of these

definitions.

Notice that in R2 with the Euclidean metric, the e-balls always give

closed discs. Frequently we find it more convenient to use "boxes" or dosed

squares to cover our sets. For example, if we want to cover the unit square

[0, 1IX[O, 1], it would be much easier to calculate the required number of boxes

of a given size than to calculate the number of C-balls. It turns out that we can

obtain the same value of fractal dimension using closed boxes as we obtain

using C-balls.

First, consider a grid in R2. Figure 3.26 shows a covering of this grid by

dosed discs, and we see that if we were to refine our grid and let the radii of

the discs go to zero, then the number of boxes and the number of discs will

remain in one-to-one correspondence.

Figure 3.26 Covering a grid with dosed discs.
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The result of placing finer and finer grids with side length 1/2n over a set

in R2, and letting Nn(A) be the number of grid squares that intersect the

object, gives a third equivalent definition of fractal dimension as follows:
D ia) rln(Nn(A))]

D(A) n4 ln(2~) I
Actually several equivalent definitions of fractal dimension are used in

different applications, depending on which is the most convenient. All of the

definitions give the same result. Therefore, both theoretical and

experimental applications are quite easy to perform in many different

situations. Different examples of these definitions for Euclidean spaces are

A limln(N(A, e))
C(A = ln(l/e)JI

where N(A, e) is

1. The smallest number of dosed balls of radius e that cover A (our first

definition);

2. The smallest number of boxes of side e that cover A;

3. The smallest number of sets of diameter of at most e that cover A

(where the diameter of a general set is the largest distance between all

pairs of points in the set); and

4. The largest number of disjoint balls of radius e with centers in A.

We have presented these definitions in the context of R and R2, but they

are easily extended to R3, where e-balls become closed spheres and e-boxes

become cubes. More generally, the same theory holds for Rn for any integer

n, although the applications are of a more theoretical nature.

65



Now that we have discussed equivalent definitions of fractal dimension,

let us use the most convenient one to compute the dimension of the closed

unit square [0, 11X[0, 11. Using squares with side length 1,1/2, 1/4,... 1/2n in

R2, we see that 1, 4,16,..., V4 of them are required to cover the unit square,

respectively. Then

D([o. lJX(0, 1]) = ii'jln(Nn(A))

we have

D([0, liX[O, l])= nI. I-4)- = - =l,,> 2.
"IL n(2R)J l. 0 f~

Hence, our definition of fractal dimension again supports our knowledge that

the closed unit square has dimension 2.

We now apply the definition of fractal dimension to the Cantor set and

the Sierpinski triangle. Intuitively, one might believe that, since these objects

lie in R and R2 respectively, they should have dimersions 1 and 2. But recall

that we removed a certain amount of length or area at each iteration for an

infinite number of iterations. Thus it might be plausible for these objects to

have a smaller dimension than that of the spaces in which they exist.

Consider first the Cantor set as a subset of the unit interval. Let the e-balls

in R be the intervale of length 1, 1/3, 1/9,..., 1/3n. One can easily see that

1, 2,4,..., 2n balls are required to cover the set, respectively. Hence, the

fractal dimension of the Cantor set is

D im [n(2)] lIm n ln2

66n n- -
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"so that the Cantor set has dimension of approximately .6309. We removed a

total length of 1 from the unit interval when constructing the Cantor set, but

still left an uncountable number of points. Thus intuitively we might expect

its dimension to be somewhere between 0 and 1. Fractal dimension

provides a measure of how many points actually remain in the set.

Moving next to the Sierpinski triangle, if we use squares of side length 1,

1/2,1/4,..., 1/2n, then 1, 3,9,...,3n squares are required to cover the set

(see Figure 3.27).

Length - 1 Length -1/2 Length -1/4

1 1 1

One Square Three Squares Nine Squares

Figure 3.27 Covering the Sierpinski triangle with grids of size 1/2n.

Hence, the dimension of the Sierpinski triangle is given by

Ds) [him (31)l=ur111 ",3 1nn-')- _t2= n.. j R =E

and the Sierpinsid triangle has dimension of approximately 1.585. Again,

considering the amount of area removed from the unit triangle, it seems

reasonable that the dimension should be between 1 and 2. It now becomes

clear why the term "fractal" was chosen to describe objects like the Cantor set

67



"and the Sierpinski triangle, as they have dimensions which are fractions of

whole numbers.

While we have shown how to determine the fractal dimension

theoretically in some very simple cases, we are not always able to make this

computation by just looking at the attractor geometrically. However, if the

iterated function system that created the attractor is known, the fractal

dimension of the attractor can be determined by analyzing the iterated

function system itself. We discuss this idea next, and state a general result.

If we know that W = wl u w2 u... u wn is the iterated function system

producing an attractor, and if each wj is a similitude with contractivity factor

si (as defined in Section ll3, in that it is a shrinking in each direction by the

factor r such that si = ri, followed by a rotation and a translation) then if the

iterated function system is totally disconnected or just touching, the attractor

has fractal dimension D(A) given by the unique solution of

•Isil D(A)= I,

i-I

where D(A) will be between 0 and the dimension of the ambient Euclidean

space. If the iterated function system is overlapping, then we only get a

bound for D(A) given by D(A) ! D, where
n D

D•1sil I' I.

i-I

Even if we do not know the exact iterated function system that produced

the attractor, we can measure the contraction of our set under each

similitude, and solve for a rough approximation of D(A). While the proof of

this result is quite complicated, (see Barnsley, 1988, p. 185) it does give a very

useful theoretical tool for determining the fractal dimension of an attractor.
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To demonstrate its use on the Sierpinski triangle, which we know is created

with three similitudes with contractivity factor of 1/2, and knowing that the

Sierpinski triangle is just touching, we have (1/ 2)D + (1/2)D + (1/2)D = 1,

from which we get D = ln3/ln2, as expected. Unfortunately, the theoretical

determination of fractal dimension is not always possible, so we must

frequently use experimental methods in applications.

L EXPERIMENTAL DETERMINATION OF FRACTAL DIMENSION

Fractal dimension, as previously discussed, is perhaps the most useful

aspect of fractal geometry in real-world applications. It has permitted the

analysis of numerous natural phenomena that previously were inaccessible

to scientists because of a lack of tools and theory. In nature, nice standard

geometric shapes are primarily the exception rather than the rule; irregular,

fractal-like shapes are found everywhere. Consider, for instance, the shapes

of clouds, coastlines, geological formations, atmospheric phenomena, plants,

crystals, and microorganisms. None of these objects can be described by a

"nice" geometric shape, but fractal geometry has provided a new way of

analyzing them.

One way scientists have studied nature through fractal geometry is by

comparing the fractal dimension of an observed natural phenomenon to a

system with a known fractal dimension (whether the known system was

created in a laboratory, created mathematically, or is a natural phenomenon

that has previously been studied). Similar fractal dimensions are used to

support hypotheses about the similarity of the two systems. Thus, the
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experimental determination of fractal dimension has become quite

important.

Currently, there is no definite theory for determining fractal dimension

experimentally. However, what follows is one of the most widely used

methods. When real-world data are gathered experimentally, they can

usually be plotted as a subset of one of the Euclidean spaces R, R2, or R3.

Using e-balls of varying radii, one can "cover" the data with the smallest

number of balls possible, obtaining values for e and N(A, e). This procedure

is not as simple as it may at first seem, because though we know when a set of

points is covered, we can never be sure that the smallest number of balls

possible has been used. Nevertheless, with the aid of computers, a very good

approximation of N(A, e) for a given e can frequently be obtained.

In R2, one way of accomplishing this is to superimpose a mesh of grid

size e over the data points, and count the number of squares that contain

data points; this procedure has an obvious analogy in R3. By varying the

value of e, pairs of values for e and N(A, e) can be obtained. Plotting the

logs of these values against each other over a range of different values of e

should yield (approximately) a straight line from which the fractal dimension

of the set can be determined.

There are some drawbacks to this method. The first problem is that the

theory we have developed for fractal dimension applies only to closed,

bounded subsets of some Euclidean space. The real world, on the other hand,

does not appear to be closed or bounded. Nevertheless, this problem is easily

overcome by the fact that once we "measure" the world (i.e., collect a set of

data points experimentally) we reduce the real-world phenomenon to a
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'cdosed, bounded set (since we can only collect a finite number of pieces of

information). Since all of our observations of nature are reduced to a finite

set, the dosed and bounded assumption fits nicely with our view of the real

world.

There is, however, another problem with the experimental method; a

problem which is not so easily dismissed. Recall that the definition of fractal

dimension invokes the limit as e approaches zero. But this limiting process

cannot be reproduced experimentally. For the fractals created through

infinite iterations of function systems, the attractors are known down to the

most infinite geometric detail. Moreover, they are completely self-similar at

every stage of iteration. However, we do not have this luxury in the real

world. We only obtain values of e and N(A, e) for a finite set of nonzero e

values, with no guarantee that the observed behavior will continue as e

approaches 0. For example, consider a piece of coral which appears to be

similar in construction to a fractal tree. On the macroscopic level we find

numerous self-similar aspects of the geometric shape of the coral. However,

as smaller and smaller values of e are taken, we find that on the cellular

level there is no similarity between the shapes of the cells and the shape of

the coral. Further analysis reveals that the cell walls themselves even have a

different fractal dimension. Moreover, this problem could perpetuate

endlessly as we continue to decrease e.

As another example of this problem, consider the dimension of a ball of

string. From a distance, the ball appears to occupy three dimensions in space,

so we might conclude its dimension is 3. However, as we move closer to the

ball, we see it not as a solid object but as a long string wound around itself, so
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we might conclude it has only one dimension. As we get closer still, we see

the thickness of the string, and again we conclude it is three-dimensional, but

further inspection shows many one-dimensional fibers wound together to

make the string. These examples demonstrate the inherent problem with

calculating fractal dimension over different ranges of e, and we have not yet

taken e anywhere near 0.

Since we are plotting e and N(A, e) only over a finite range of e values,

any conclusions drawn about fractal dimension must rely on the gross

assumption that the object is infinitely self-similar. Consequently, fractal

dimension has been more often used to disprove hypotheses than to

conclusively prove them. Nevertheless, if two objects have similar fractal

dimensions over the same range of e values, and if one object is well

understood, one may use this information to help explain and analyze the

other object.

As an example, consider the dissipation of different pollutants in a

laboratory "atmosphere." In an isolated setting, the behavior can be studied

in great detail and the fractal dimension of the pollution clouds can be

determined over a wide range of e values. Observing the fractal dimension of

real-world pollution clouds over the same values of e might be a way to

determine which pollutant is controlling the clouds' behavior, and which

pollutants are escaping into the atmosphere. Similar techniques have been

used to liken the growth of certain plants to the formation of crystals in a

laboratory, and to extrapolate the behavior of the known system to that of an

unknown system.
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Two other techniques for experimentally determining fractal dimension

are the area-perimeter relationship and the number-resolution relationship.

In the area-perimeter relationship, the area of a set of data is computed, and

its perimeter is measured several times on a finer and finer scale. In the

number-resolution relationship, the number of pixels on a screen is plotted

against the resolution of the screen for a variety of resolutions. In both of

these techniques, the results (graphs of ordered pairs of perimeters and scale,

or numbers and resolutions) are usually compared to those of a known set of

data points. If the slopes of these data points (or the logs of the data points)

correspond to an object with a known fractal dimension, then the fractal

dimension of the unknown object can be estimated. These two techniques

are used widely in practice, particularly with photographic images, but again

are most commonly used to determine the similarity between two fractal-like

objects.

Because the field of fractal geometry is so new, the possiblilties of

applications have only begun to be discovered; however, fractal dimension is

one aspect that has proven quite useful in many sciences.

J. THE KOCH SNOWFLAKE

An interesting phenomenon that has recently been explained using these

ideas is the discrepancy in the recorded lengths of the borders of many

countries. In Europe, the reported lengths of the borders between many

countries varies greatly, depending on who gives the report. For example, the

French records and the German records of the length of the French-German

border may differ by several kilometers. The reason for this difference is
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simple. A border measured with a ruler from a 1:50,000 scale satellite

photograph records much less of the border's aetail than a surveying team on

the ground records, which again would record much less detail than a

government employee on the ground with a ruler. The smaller the device

used to measure the bc-.der, the more detail will be recorded, and the longer

the border will appear to be. This idea is readily illustrated through the

analysis of a fractal object called the Koch snowflake.

To construct a Koch snowflake, begin with an equilateral triangle, and

trisect each of its sides. At each point of trisection, construct another

equilateral triangle extending outwards from the original triangle, and trisect

each of their external sides (see Figure 3.28). Continuing this geometric

construction indefinitely yields the Koch snowflake. While the area inside

the Koch snowflake is clearly finite (since the entire snowflake lies inside any

circle containing the original triangle) the length of its border is, surprisingly,

infinite. To see this, note that at each step the length of the border is

increased by a factor of 4/3. Thus, starting with a length of L yields a final

length of limn_...L(4/3)nf, which is an infinite length. If we were to measure

the Koch snowflake with rulers of different scales, remarkably different

results for the length of the border will be obtained. This is the same

phenomenon being experienced measuring border lengths in Europe.

As another real-world application of this concept, many small "resort"

lakes entice tourists by advertising "a thousand miles of shoreline," or

promises to that effect. Never in such an advertisement will one find a

mention of the scale used to arrive at that number, as this is simply an

application of the above concepts.
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Start With

an Equilateral
Triangle

Figure 3.28 Constructing the Koch snowflake.

K APPLICATIONS OF FRACTAL GEOMETRY

Aside from the applications already mentioned (namely, an aid to

computer graphics and the use of fractal dimension to classify and compare

similar objects) fractal geometry has so far found few other applications in the

physical sciences. As already mentioned, the infinitely-detailed property of

fractals does not hold in the real world when objects are analyzed at the

molecular and smaller levels. Even Benoit Mandelbrot, the German-born

American scientist who gave fractals their name, admits that true fractals do

not exist in nature. However, he is also quick to point out that there are no

truly straight lines or perfect circles either. While traditional geometries have

been inadequate in sufficiently describing all of nature, perhaps fractal

geometry, at least on the macroscopic level, may provide yet another

approach. When we consider the infinitude of natural objects that have a

fractal-like structure, we see that nature is indeed more fractal than it is
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Euclidean. From the formation of crystals and snowflakes to the way coral,

certain roots, plants, and trees grow; from the shapes of lightning bolts and

some electrical discharges to cloud formations, weather patterns, and galactic

patterns; from the structure of our lungs and surfaces of our brains, to the

patterns of our veins; much of the physical world seems to have a fractal

structure to it. A more complete analysis of some of the minutely detailed,

self-similar objects in nature may someday be realized through fractal

geometry.

One area of mathematics, however, where fractal geometry has

unquestionably found a permanent role and distinguished itself is in the

study of chaotic dynamical systems. Dynamical (changing) systems are

prevalent in the real world and we are finding ever greater numbers of them

to be chaotic. In both mathematical models and the physical world, strange

sets of data points are being observed that seem to contain self-similarity and

infinite detail. Many of these sets of points are, in fact, fractals and with the

aid of fractal geometry we can understand them better. Hence, when we

realize how much of our universe is modeled by chaotic dynamical systems,

we will better appreciate the usefulness of fractal geometry in studying these

systems. We take up the study of chaos in the next chapter.
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IV. CHAOS

A. INTRODUCTION

We have introduced and studied iterated function systems, from our

simplest example where fn+l(x) = (fn(x))2, to systems that produced very

intricate and interesting geometric shapes. The similarity between these

systems is that we could predict the exact behavior of the systems after any

number of iterations. Unfortunately, in nature this predictability seems to be

more the exception than the rule, which has caused scientists frustration for

centuries whenever their models of seemingly simple phenomena produced

erratic behavior. This observed phenomena in dynamical systems is called

chaos, a precise definition of which we provide below.

We introduce our study of chaotic dynamical systems by first looking at

discrete systems, such as the iterated function systems we have been

discussing. There are two reasons for this approach: the first is that discrete

systems provide a conceptually simpler setting for understanding the theory,

and the second is because many data are collected from the real world in

discrete increments. For example, consider a biologist studying the dynamics

of a population. Not only will the population change in discrete increments,

but the biologist can measure the population only at discrete intervals. In

fact, even in continuous real-world behaviors such as beam vibrations, we are

able to record measurements only at discrete intervals. Since much of science

involves studying a continuous real world based on discrete observations, it
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makes sense to begin the study of chaotic dynamical systems with the discrete

case.

A further reason to study discrete iterated function systems is that they

capture the essence of an important real-world phenomenon known as

feedback. Feedback occurs when the present state of a system affects its future

state, which in turn means there could be at least a small time delay in the

change of the state of a system. For instance, feedback in speaker-microphone

systems causes jumps at discrete time intervals because of the time it takes the

sound to travel through the system (although we preceive these jumps as

continuous when we hear them). Biological systems which are periodic and

demonstrate feedback include predator-prey models, the motion of slime

molds, light emission by groups of fireflies, glycolysis and photosynthesis, and

even the conditions in the brain leading to epileptic seizures. Feedback is also

exhibited in electrical circuits, as the defense contractor TRW discovered

when chaotic feedback shut down its European computer network. Finally,

gaps in the asteroid belts that would be in phase with planetary orbits indicate

the effect of feedback in our solar system. These are just a few examples

where relatively simple mathematical models can capture important real-

world phenomena.

The following five sections are based on Devaney (1989), and provide a

background and a setting for studying chaotic dynamical systems. The

remainder of the chaper comes from a variety of sources, but in the cases

where the references differ on theorems or definitions, the ones used by

Devaney are followed. Additionally, many of the examples and applications,
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*where not specifically referenced, come from Gleick (1988), Moon (1987), Levy

(1991), and Briggs (1989).

We begin by developing the mathematics of discrete dynamical systems.

Our goal is to understand thoroughly the idea of orbits of points under

repeated iteration.

B. GRAPHICAL ANALYSIS OF FIXED POINTS OF MAPS

We have already shown how graphical analysis of a function can reveal

information about its fixed points, periodic points, and whether those points

are attracting or repelling. We will now introduce the concept of graphical

analysis of the nth iterate of a function, denoted by fn(x). Consider first a very

simple function mapping the unit interval to itself f [0, 11-40, 11, defined by

fRx) = 2x (modl). The notation 2x (modl) means: multiply the input value

by two, and consider only the fractional part, i.e., the remainder upon

division by one. For example, M(1.57) = 3.14 (modl) = .14. This mapping gives

f(x)=2x if 0<x51/2 and f(x)=2x-1 if 1/2<x51. This function is called

the Baker map, and its graph is shown in Figure 4.1. The Baker map is clearly

an onto function, but it is not one-to-one since every y value in [0, 1] is the

image of exactly two values of x. Additionally, the fixed points of the Baker

map are 0 and 1, both of which are repelling.

Consider the second iterate of the Baker map, f2(x) = 4x (modi). Its

behavior can be seen more clearly by the graphical analysis shown in Figure

4.2. Since the interval [0, 1/21 is mapped to [0, 11 under the first iterate, it

makes sense that under the second iterate the interval [0, 1/2] will contain a
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....f.x).,

0 1/2 1

Figure 4.1 The Baker map.

smaller copy of the entire first map. Additionally, the second iterate shows

the appearance of two new fixed points, 1/3 and 2/3. This fact demonstrates

the existence of a two-cycle in the original map; in fact, it is easy to verify that

f(1/3) =2/3 and f(2/3)=1/3. Notice also that the fixed points of f(x), 0 and

1, remain fixed for f2(x). Observing the fixed points of the nth iterate of a

map reveals both the periodic and fixed points of the original map. The third

iteration is f3(x) = 8x (modl) and its fixed points, 0, 1/7,2/7,..., 6/7,1 are

also shown in Figure 4.2. In the case of the Baker map, we can easily obtain a

dosed-form expression for its nth iterate: fn(x) = 2nx (modl). This formula

makes the Baker map very easy to graph and analyze, and we will return to it

when "chaos" is defined. It may be very difficult, however, to obtain a simple

expression for the nth iterate of a map, and it is frequently even more

difficult to graph it.

A slightly more complicated map to analyze graphically is the map

f(x) = 4x(1 - x), which is a parabola that maps the unit interval to itself. Its
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graph and second iterate on the unit interval are shown in Figure 4.4. Again,

the appearance of fixed points under f2(x) shows a two-cycle of f(x), and a

simple check shows this two-cycle occurs at the points x = (5t *45)/8.

f(x) f(x)
1...................... ......... 1.... ........ ... ... .... .

0 1/2 1 0x • £.x
10 1/21

f 2 (x) - 4x(modl) f 3 (x) - 8x(modl)

Figure 4.2 The second and third iterates of the Baker map.

1 .. . . ...is a s .. ...... ...... .. .. . .. .. . .. .... .. .. .

i :

0 1/2 1 0 1/2 1

f(x) - 4x(1 -x) f 2(x)

Figure 4.3 The first and second iterates of fRx) = 4x(1 - x).
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While this technique is not always easy to use (due to the difficulty of

graphing many functions accurately), it can reveal considerable information

about the orbits )f points in a dynamical system.

C. MAPS OF THE CIRCLE

Consider the map f:- SI-+S1 with f(9) = 29 of the unit circle to itself. Here

0 is the angle measured in radians (positive counterclockwise) between the

positive x-axis and the line joining the origin to any point on S1. Every point

on the circle is represented by the form 0 =- + 2k1 for any integer k. The

map f, which doubles the angle of any point on the unit circle, has certain

properties which help illustrate and suggest a precise definition of chaotic

systems (see Figure 4.4).

0=0

Figure 4.4 The map f(O) = 29 of the circle S1.

Fir-st notice that 0 = 0 is a fixed point of f, since f(0) = 0. Additionally, for

any point of the form 0 = 2kx/2n, fN(O) = 2kx, so that these points are

eventually fixed. The points of the form 9 = 2kx/2n form a dense subset of
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S1, since between any two distinct points on S1, we can find a point of the

form 2kc/2n. To see this, consider two arbitrary distinct points 01 and 02 on

S1, where 01 = 2nal and 02 = 2=2 with 0 zq al < a2 < 1. Since a2 - al > 0,

there exists an integer m such that m(a2 - a,) > 1 by the Archimedian

property. Let 2n > m. Then 2n(a 2 - al) >1 implies there exists a positive

integer k such that 2ha 2 > k > 2hoal, or 02 > 2kx/2n > 01. Thus, points of the

form 2kx/2n are dense on S1.

The periodic points of f are slightly more difficult to find. Since

fn(0) = 2n0, the point 0 is periodic of period n if and only if 2n0 = 0 + 2k1

for some integer k. Solving for 0 yields 0(2n - 1) = 2k1, so for 0:< ks 2n - 1,

the points 0 = 2kx/(2n - 1) are the periodic points of period n. Using complex

analysis, it can be shown that these points are the (2n - 1) roots of unity, and

that they are dense on the circle S1. Geometrically, this means that the points

of period n are those that divide the unit circle into 2n - 1 equal segments.

This interpretation also shows that they are dense on SI. This is shown

graphically in Figure 4.5 for the points of period two. The point O0 trivially

has period two since fn(O0) = 00 for all n. The points 01 and 02 have period

two since f(RO) = 02 and f(02) = 01.

Another interesting property of f is that for any two points on S1, no

matter how close together they start, iteration under f will separate their

iterates by an arbitrary amount The formal definition of this characteristic is

as follows: a mapping f: S-*S has sensitive dependence on initial conditions

if there exists 8 > 0 such that for any point x e S and any neighborhood N
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". 0 -2n/3

i e2 = 4x/3

Figure 4.5 Periodic points on S1 of period two.

of x, there exists a point y e N and an integer n > 0 such that

d(fn(x), fn(y)) > S. Notice that under this definition, it is not necessary for

every point in the neighborhood N to move away from x under repeated

iteration. However, in any neighborhood containing x there must exist at

least one point that does move away from it Since our map of the circle

f(0) = 20 doubles the arc, length between any two points, there is always an

iteration number n that moves two points at least a given distance 8 apart;

hence the map f(0) = 20 has sensitive dependence on initial conditions.

A third interesting property of the map f(0) = 20 is that for any pair of

open arcs U, V c S1, there exists a number n > 0 such that the intersection of

fn(U) and V is nonempty. The formal definition of this property is as

follows: a mapping f: S--S is called topologically transitive if for any pair of

open sets U, V c S there exists an integer n > 0 such that fn(U) n V * 0.

Since any arc U in SI is expanded under iteration of f(0) = 20 until it
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covers all of S1, every arc eventually intersects every other arc in S1. Thus

the mapping f(O) = 20 is topologically transitive.

The three properties of f: S1¼S1 where f(O) = 20 define a dynamical

system to be chaotic. The formal definition follows.

D. CHAOTIC DYNAMICAL SYSTEMS

A mapping f: S-4S is called chaotic if the following three conditions are

met:

1. f has sensitive dependence on initial conditions;

2. f is topologically transitive; and

3. Periodic points are dense in S.

While precise definitions of chaos vary slightly among different

disciplines, most of them are at least similar to those we gave here. These

three conditions are frequently referred to as unpredictability,

indecomposability, and an element of regularity, respectively. Because of the

sensitive dependence on initial conditions, it is almost impossible to predict

the orbit of an arbitrary point with any degree of accuracy. This is the

unpredictability aspect of chaos, and it makes numerical computations with

chaotic dynamical systems virtually impossible (since the slightest rounding

error at any step will almost certainly create a point with an entirely different

orbit). The indecomposability property comes from the fact that there is no

way to decompose the set S into two disjoint subsets that do not eventually

interact (since any open subset of S eventually intersects every other open

subset of S under iteration of f). Finally, the denseness of the periodic points

provides an element of regularity amidst all this chaotic behavior.
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Let us now demonstrate that the Baker map is chaotic directly through a

graphical analysis. To see that the periodic points are dense, note that the nth

iterate fn(x) = 2nx (modi) has n evenly spaced fixed points in [0, 11 for n

arbitrarily large as indicated in Figure 4.2. Figure 4.6 also shows that f is

topologically transitive since any open interval (p, q) contains an interval

that is mapped to [0, 11. Finally, Figure 4.7 shows the sensitive dependence

on initial conditions, because any two points p and q are moved an arbitrary

distance apart under some iteration of f. While this graphical technique is

not a proof, it can be supported by a rigorous mathematical argument. It

alsodemonstrates; the usefulness of analyzing some maps graphically to

determine if they are chaotic.

p q x (not to scale)

Figure 4.6 Topological transitivity of the Baker map.
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"f(x)

f(q)

f(P)

0 -

p q x (not to scale)

Figure 4.7 Sensitive dependence on initial conditions of the Baker map.

Chaos occurs not only in mathematical equations, but in fact seems to be

most prevalent in the real world. While accurately modeling real-world

phenomena with mathematical equations is sometimes very difficult,

particularly when the physical system is chaotic, it happens that even a

simple model crudely representing a physical system may turn out to be

chaotic. This happenstance in turn tells us that the more complex physical

system is probably also chaotic. We will see this happen when we discuss the

Lorenz equations as a crude model for weather prediction. Another example

of this chaotic behavior occurs with a simple differential equations model

used to describe beam intersections in particle accelerators. The model

explains why it is so difficult to predict the action of intersecting beams in

particle accelerators (at least using existing models).

There are several examples of physical systems where chaos has been

observed,,studied, and in some cases, somewhat understood. These systems

include turbulence in fluids, thermal convection in gasses, panel flutter on
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supersonic aircraft, certain chemical reactions (specifically the Belousof-

Zhabotinsky reaction), abnormal cardiac rhythms, nonlinear electrical

circuits, biological population dynamics, vibrations of buckled elastic systems

(such as beams), geomagnetic field reversals, and even planetary motion.

Many of these systems are discussed in Moon (1987), Holden (1986), and

Rasband (1990).

Unfortunately, it is very difficult to identify chaotic systems

experimentally. One reason is that numerical roundoff in collected data

could lead to an erroneous assumption that two data points are the same

(indicating a cycle), whereas a slight difference in their actual values may

cause their orbits to diverge rapidly (because of sensitive dependence on

initial conditions). An even more difficult problem is with distinguishing

between a truly chaotic orbit and a cycle with a very long period. To

emphasize the significance of this problem we note that the Department of

Mechanics at Cornell University requires 4,000 non-cyclic real-world data

points before scientists there declare a system as being chaotic. For biologists

and economists, who model annual trends, this requirement may seem

unreasonable. However, to a helicopter pilot whose life depends on chaotic

vibrations not occurring on the main rotor blade, this requirement may not

be stringent enough.

While the map f: S1-+S1 with f0O) = 20 provides a simple example of a

chaotic map, it by no means represents the extent of chaotic dynamical

systems. We turn now to several more interesting chaotic maps.
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E. TOPOLOGICAL CONJUGACY

One way to determine if a map is chaotic is to check directly the three

conditions of chaos. However, using the concept of topological conjugacy, we

can apply the dynamics of a familiar map to those of another function. Two

maps, f: X-4X and g: S--S are said to be topologically conjugaie if there exists

a homeomorphism h: S---X such that f(h) = h(g). If f and g are

topologically conjugate, then g = h-lfh, so gn = (h-lfh)n = (h-lfh)(h-lfh)...

(h-lfh) = (h-1f)(hh-1)f(hh-1) ... f(hh-1)(fh). Since h is a homeomorphism,

hh-1 is the identity function, hence gn = h-lfnh, and hgn = fnh. It follows that

f and g share the same dynamical properties; in particular if g is chaotic the

same is true of f. This idea is shown in Figure 4.8 with. If h: S--X is not a

homeomorphism (e.g., if it is two-to-one) then f and g are said to be

topologically semi-conjugate. Nevertheless, if g is chaotic, f is still also

chaotic. Since h is two-to-one, the dynamics of f are even more complicated

because h introduces even more periodic points or cycles. It suffices that

chaotic behavior is preserved through topological semi-conjugacy, which is

the extent to which we use this concept.

S - g--+ S

h .h

X f -- X

Figure 4.8 Diagram showing topological conjugacy between g and f.

What follows is an example of the usefulness of topological conjugacy.

Consider the map f: R-+R, where fRx) = 2x2 - 1. We would like to know if
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this map is chaotic. We could try to show sensitive dependence on initial

conditions, topological transitivity, and search for a dense orbit. Instead we

consider the mapping h(O) = cosO. Since, cos20 = 2cos20 - 1 = f(h(O)), the map

f is topologically semi-conjugate (since the cosine function is not one-to-one)

with the map g(0) = 20 when g: S1-S1, as shown in Figure 4.9. Since we

know that g is a chaotic map from our previous discussions, and that f

shares the same dynamical properties as g, the map f(x) = 2x2 - 1 is also

chaotic.

0 - g -- 20

1,h Ih

cosO - f -- cos2O

Figure 4.9 Topological conjugacy between g(e) = 20 and fRx) = 2x2 - 1,
under h(0) = cosO.

We frequently use the concept of topological conjugacy to analyze maps

suspected to be chaotic. The simplicity of the previous example shows why

topological conjugacy is often used.

F. CHAOTIC DYNAMICS ON CODE SPACE

Consider now the shift map a: 12-+12 on code space 12 = (sls2s3...:

Si e (0, 1)) where a(sls2S3...) = s2s3s4.... We show directly from the

definition that this mapping is chaotic.

To see that 0: ,7,2-+2 has sensitive dependence on initial conditions,

consider any point x = xlx2x3... in £2. For a point y = yly2y3... to be in a
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neighborhood of x, it must agree with x for a certain number of digits

depending on the size of the neighborhood. Suppose the agreement is with

thefirst n digits; x =yl, x2=y2,....,xn=Yn. Ifwechooseyk* xk forall

k > n, then y still lies in the neighborhood of x, but I on(x) - an(y) I > 8 for all

8 < 1. Hence, the point y, which is arbitrarily close to x, moves arbitrarily

away from it under iteration of c. This establishes sensitive dependence on

initial conditions.

To show topological transitivity, consider two open sets U, V e 7,2. Since

U is open, its points U1U2U3...Un... in 7,2 agree for the first n digits, but

can differ in any way beyond the nth digit for some positive integer n.

Likewise, points in -2 which agree in the first m digits for some m all lie in

V. It follows that the point U1U2U3. ...UnVlV2V3. .. Vm... lies in U, while the

nth iterate of U under a contains the point vjv2v3.. .vm... in V. Thus the

intersection of on(U) and V is nonempty for any open sets U and V of 12.

Therefore, o: 12-+12 is topologically transitive.

To see that the periodic points of a are dense in 12, we show that for any

point s e 12 there is a periodic point arbitrarily dose to it. Thus, let

s = sjs2s3.... We want to find a periodic point x that corresponds to s for

up to n digits (selecting n arbitrarily large makes the periodic point

arbitrarily close to s). Choose the point x = S1s2. . SnSIS2 ... Sn. . , which is a

periodic point of period n. The point x is arbitrarily dose to S. Hence, the

periodic points of a are dense in 12.

In conclusion, the shift map on code space a: 12--+12 is chaotic. Like the

map of the unit circle f(8) = 20, the shift map is quite useful in showing that

other maps are chaotic through the use of topological conjugacy. When we
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can establish topological conjugacy between the maps f and a, we will refer

to analyzing the behavior of points under f as studying the symbolic

dynamics of the map f.

Using the concept of topological conjugacy, it is now an easy exercise to

show that the Baker map f(x) = 2x (modl) is chaotic. This behavior can be

shown through either the shift map on code space or the angle doubling map

on the unit circle, which confirms our earlier geometric demonstration of

this fact.

G. NEWTON'S METHOD FOR X2 - -1

To see how chaos sometimes arises from mathematical systems, consider

the following example from numerical analysis due to Strang (1991). Recall

that in finding the zeros of a real valued function f(x) by Newton's method,

an initial guess together with the iterative process Xn+1 = Xn- f(xn)/f(xn) is

used. Applying this method to find the roots of f(x) x2 + 1, the iteration

equation reduces to the iterated function system Xn+l = Xn - (xn2 + 1)/(2xn) =

(1 /2)(xn - /xn). Newton's method converges for most polynomials under

certain conditions (e.g., when F(x) * 0 and no inflection point occurs between

the root and the initial guess). In the case in question, the only roots are ±i

so the system cannot converge on the real line. (But note that f(x) is always

strictly positive and has no real roots.)

The behavior of the iterated function system changes dramatically

depending on the initial guess. For some values of xo, this system diverges to

infinity; for example, if x0 = 1, then xl = 0, and x2-+* (since we cannot

divide by zero). On the other hand, if we choose xo to be very large, then xi
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"is approximately half that value, and the orbit moves towards zero until the

1 /Xn term makes the next iteration large again. Finally, if we choose

xo = 1/,.r, then x1 = -1/43 and x2 = 1/r3-, yielding a two cycle.

Because we are searching for a root value which is nonexistent on the

real line, Newton's method exhibits strange behavior for x2 + 1 = 0. We now

explore whether this system is chaotic. From trigonometry, cot2O =

(1/2)(cote - 1/cotO). Using the map h(O) m cotO it follows that the map

g(0) = 20 is topologically conjugate to f(x) = (1/2)(x - 1/x), as shown in Figure

4.10.
0 - g-- 20
1 h Ih

cotO - f -4 cot28

Figure 4.10 Topological conjugacy between g(e) = 20 and f(x) = (1/2)(x - 1/x)
under h(e) = cotO.

Thus fRx) exhibits the same dynamical properties as g(O) = 20 on SI; hence f

is chaotic. We can actually observe this behavior graphically by considering

the graph of the iterates of f. Letting xo = cote, we obtain xI = f(xo) = cot2Q,

x2 = cot4O, and in general, xn = cot(2ni). Hence, the orbit of x under f is the

sequence cotO, cot2e, cot40... for different values of 0 corresponding to our

initial guess. The graph of cotO is shown in Figure 4.11, and helps to

demonstrate the results noted earlier for different initial guesses.

If we start with xo = 1 we get Oo = x/4 (since cot (x/4) = 1). Then 01 = x/2,

corresponding to xi = 0 (since cot (x/2) = 0). Next 02 = z and the orbit for x
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f (0)

Figure 4.11 The cotangent map and a chaotic orbit.

diverges since cot x is undefined. In fact, any starting value of xo

corresponding to the form O0 = ks/2n, for positive integers k and n, results

in an orbit that eventually diverges to -.. Starting with xo = 1 /F, we find

Oo = x/3 (since cot(x/3) - 1/13). Then 1 -200= 2X/3 gives xi -1 i, (since

cot(2x/3) = -11V). Next 02 = 20 1 = 4U/3 = o + x. Since the cotangent function

is periodic with period x, x2 = I/i/3. Therefore, this orbit is the two-cycle we

observed earlier. In fact, if Or = (p/q)x, where p/q is not of the form k/2n,

then the orbit eventually cycles. This observation further demonstrates the

denseness property of the periodic points. Finally, if 00 is an irrational

multiple of x, the orbit will never diverge or cycle; in fact, it will be chaotic, as

we already knew.

Considering our search for i on the real line, the points that we hope

would eventually converge to zero are yn = Xn2 + 1. If we further analyze

these points, we find yet another chaotic map which shares the dynamics of
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"the one we just studied. For Yn+l = (Xn+1) 2 + 1 =(1 /4)(Xn -1 /xn) 2 +1 =

(I/4)(xn2 + 2 + I/xn2). Simplifying algebraically, Yn+1 = (1/4)(xn 2 + l)2 /xn 2 =

yn2/4(yn - 1). If we change variables and let z = l/y, this last equation reduces

to zn+l = 4zn(l - zn). The latter iterated function is a member of the quadratic

family of maps we study in great detail below, and we know it is chaotic.

As a final illustration of Newton's method, we analyze the system

f(z) = z4 - 1 in the complex plane. Since this equation has four roots, ±1 and

±i, depending on the initial value, the iterations could end up at any one of

the four roots. The results encountered with computers when searching for

these roots has not always been predictable, depending on the initial value.

Now each of these roots has around it a 'basin of attraction" inside of which

all initial values converge to that root upon repeated iteration. However,

along the diagonals Re(z) = Im(z) and Re(z) = -Im(z), there are regions that

give rise to chaotic behavior. To see this, color the complex plane based on

which initial values converge to which root: that is color all the points that

converge to 1 blue, to -1 green, to i yellow, and to -i red. There are four

large basins of attraction with infinitely detailed, multicolored borders

between them. In fact, there is no dearly defined boundary between any two

basins of attraction: between any blue and red region, there is a yellow and a

green one. A schematic of the complex plane showing the basins of attraction

and the chaotic regions is shown in Figure 4.12. A detailed color image of this

figure can be found in Gleick (1988, p. 114).
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Figure 4.12 Schematic of the complex plane indicating the behavior
under Newton's method for z4 + 1 and the (colored) basins of attraction.

H. THE QUADRATIC FAMILY OF MAPS

In this section we study a specific case of maps from the quadratic family

f(x) = ax2 + bx + c. We discuss a model from population biology to develop

this map, which comes from Briggs (1989). The mathematics in this section is

from the book by Devaney (1989) and the article by Devaney (1989), while

some of the more detailed results, particularly about the Feigenbaum

constant, are from Rasband (1990).

Consider a population of moths which live for one season, lay their eggs,

and then die, all in a fixed and limited environment. If we do not consider

the interaction of the moths with the environment or other species, we can

model the dynamics of the moth population by assuming that the size of the

population increases after each life cycle in constant proportion to the size of

the population during the previous cycle. If we let the constant of
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proportionality equal B (for birthrate), then for each population cycle we

have xn+i = Bxn, where x represents the population and n represents the

time period. Given only these conditions together with B > 1, this model

predicts the population increases forever and eventually becomes arbitrarily

large. Clearly no population in the real world is represented by this model,

since no limited environment can sustain an infinite population. Thus it is

necessary to adjust the model.

Suppose then that as a population increases above the maximum

sustainable capacity of the environment, the competition for resources causes

some of the population to die off or be killed. Hence a particularly large

population might cause the population to actually decrease in the next cycle.

If we scale our model so that 0 < x < 1, with 1 being the capacity of the

environment, then incorporating the multiplicative factor (1 - x) into our

model could account for the limitations of the environment on large

populations. We now adjust B to account for the birthrate (and deathrate) in

a fixed environment and denote its new value by X, obtaining the refined

model xn+l = ;xn(l - xn). This model shows that for small populations, the

population growth is dose to the original model xn+l = Bxn. However, as the

population approaches the maximum sustainable capacity of the

environment, its growth starts to decline because of the (0 - xn) factor.

The equation Xn+l = )Xn(1 - xn), X > O, is called the logistic equation. It is

perhaps one of the simplest population models to represent the interaction

between a species and its fixed environment (although it excludes

interactions with other species). Allowing x to vary between zero and one

scales the model to any population size. Restricting the parameter 0 : X <4,
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we see below that the model never allows the population to increase above

the maximum capacity of the environment. The logistic equation has been

used by biologists for many years, and it has been a major goal to understand

populations that are modelled by this equation. One methodology has been

to determine experimentally a value of X based on the species and the

environment, and then to observe the population over time to see if it

behaves according to the model. This simple model is a fairly good predictor

for a simple species like bacteria or yeast growing in a culture, but it has not

always correctly predicted the observed results for more highly developed

species, like mammals. Some populations have been observed to settle down

to a fixed value for all time increments, others have been seen to cycle

between two, four, or even larger periods, and still others have demonstrated

completely unpredictable behavior that fit no known model at all. What

happens is that, for certain values of X, the logistic equation f(xn) = Xn( - Xn)

becomes chaotic. Thus it is impossible to predict its behavior even after a few

iterations. We next examine this map mathematically.

First note that for values of xo equal to 0 or 1, the next iteration xI = 0

is a fixed point of this map, since f(O) = 0. Also, for values of xo outside the

interval [0, 1], xl becomes negative (which does not make physical sense

since we are studying populations). Furthermore, all negative values diverge

to --- under repeated iteration of E Hence, for practical reasons we

concentrate on the dynamics of this system on the interval [0, 1].

Suppose 0 <X < 1. Then x = 0 is the only fixed point of the system (see

Figure 4.13). Moreover, all values of x0 e [0, 11 tend to 0 under iteration of

f. (Recall that if I f(x) I < 1 for a fixed point x, then the fixed point is
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attracting. Since f(x)= (1 -2x), for X < 1, we obtain F(0) = X < 1; so 0 is an

attracting fixed point). The physical interpretation of this result is that the

population does not reproduce fast enough to sustain itself and eventually

dies out.

f(x) f(x)

1 ............................. fx x

0 1

Figure 4.13 The logistic equation for X < 1.

Now increase X so that it is greater than 1. Then 0 becomes a repelling

fixed point since F(O) = X > 1. However, note also the introduction of another

fixcd point p in the interval [0,1], given by p = 1 - 1/A (see Figure 4.14). If

we consider values of X such that 1 < X < 3, we see that the point p is an

attracting fixed point since If'(p)I = IM(1-2+2/A)I = 12-XI <1. Hence, for

values of X between 1 and 3, 0 is a repelling fixed point and p = 1 - 1/A is

an attracting fixed point. This means that our population will always settle

down to a fixed value and not vary in cycles.
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f (x) 1. . f(x) x

0 X 0

Figure 4.14 The logistic equation for I < X < 3.

Now let X jump to the value X = 4. Since xn+l - 4xn(l - xn) we know

that this map is chaotic because of our discussion of Newton's method for

Z2 . -1. We now demonstrate this idea graphically to clarify further what is

actually happening. Consider the graph of f(x) - 4x(I - x) on the interval [0,

11 in Figure 4.15. The graph represents a two-to-one and onto function.

Hence, the second iterate f2(x) creates a condensed copy of f(x) on each

interval [0, 1/21 and [1/2, 11. Moreover, that f2(x) has four fixed points (see

Figure 4.16). The third iteration fO(x) is also shown in Figure 4.16. Observe

that we are creating a graphical situation similar to the Baker map studied

earlier (with parabolic arcs rather than straight lines). The graphs reveal that

f(x) has sensitive dependence on initial conditions, topological transitivity,

and a dense orbit; so it is, in fact, chaotic. This analysis explains why, for some

populations, the observed values fluctuate wildly, despite a seemingly simple

mathematical model describing the behavior.
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f(x) f (X) -x1 .............. ".. . . . .. f x

0o x0 3/414

Figure 4.15 The logistic equation for X =4.

f(x) f 3(x)
..................... ....... ......... 1.. ....... ........

S---'--- - x •.- x
0 0

Figure 4.16 The second and third iterates of the logistic equation for X =4.
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* Another way to show that the map f(x) = 4x(1 - x) is chaotic is to use the

concept of topological conjugacy. Recalling the trigonometric identity

sin220 = 4sin2O(1 - sin 20), the mapping h(0) = sin 20 shows that fRx) = 4x(1 - x)

is topologically semi-conjugate with the map of the circle g(0) = 20. This

commutative diagram is shown in Figure 4.17. This is yet another way to

show that the map fRx) = 4x(1 - x) is chaotic.

0 - g -4 20

.Lh 4,h

sinO -2 f - sin20

Figure 4.17 Topological conjugacy between g(O) = 20 and fRx) = 4x(1 - x).

Now examine what happens when 3 < X < 4. We observed an attracting

fixed point for , < 3, and chaotic behavior for X = 4. Thus as X increases

from 3 to 4 the dynamics of the systeni must change dramatically to

produce this chaotic behavior. For X = 3, the magnitude of the derivative at

the fixed point p=1-1/7,=2/3 isequalto 1fF(2/3)1 = 12-7XI =1; for X >3,

I f(p) I > 1. This means that as the value of I passes through 3, the fixed

point p goes from attracting to repelling. This result implies that both of the

fixed points, 0 and p = 1 - 1/A are repelling. With both fixed points

repelling, one might think the orbit will fluctuate wildly within the interval

[0, 11. But what really occurs is the creation of an attractive two-cycle, as

shown in Figure 4.18. This splitting of a fixed point into an attractive cycle is

called a period-doubling bifurcation.
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f(x)

0 10

Figure 4.18 An attractive two-cycle in the logistic equation for X > 3.

The two-cycle previously described is one of the phenomena that puzzled

biologists for many years. Physically, a small population would flourish and

breed very rapidly, since the environment could easily support it. After a

time a large population would be created in the next cycle. This population

would breed more sluggishly because it was nearer the capacity of the

environment. Furthermore, the population would not approach its fixed

value (since that value was repelling). Even when biologists altered the

population it would still tend back to the attractive cycle.

As we continue to increase the value of I beyond I = 3, we find that at

S- 3.4495 the two-cycle becomes repelling and an attractive four-cycle is

created. Now, as with X = 3, the derivative I (fn)'(p) I for the cyclic points Pi

and p2 is passing through 1, and the two-cycle becomes repelling; another

bifurcation of the system has occured.

If we continue to increase X., the next bifurcation occurs at X - 3.544,

where the four-cycle becomes repelling and an attractive eight-cycle is created.
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Plotting the values of the parameter X against the values of the attractor (the

attracting periodic points of period two, four, eight,...) shows how each cycle

bifurcates into another cycle with twice the period as the previous one. Such

a bifurcation diagram is shown in Figure 4.19 for 2.9 < X < 3.9. The parameter

values at which the next four bifurcations occur are X - 3.5644, 3.5688, 3.5697,

and 3.5699. As one can see, these numbers are getting closer together and they

converge to a value where the map becomes chaotic.

IS

Figure 4.19 The bifurcation diagram for the logistic equation as X
increases. The figure is from Holden (1986, p. 46).

The apparent convergence of these numbers led to the discovery of a

constant that appears to be almost universal in dynamical systems. Denote

the values of X at which bifurcations occur by Xk for k = 1, 2, 3,..., denote

the value to which they converge by A., and consider the following. Figure

4.20 shows the second iterate of the logistic equation. Note that it contains a

scaled copy of the first iterate, and that each further iterate will again contain a

scaled copy of the original map. This geometric observation provides insight

to the phenomenon of period-doubling. At X = Xk-1, a period-doubling

occurs in the system that lasts for a duration (in X) of (Xk - Xk-1). The next
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period doubling occurs at X = Xk, and lasts for a ,-duration of ()Lk+1 - Xk). It is

not unreasonable to expect a "scaling" in the successive .-lapses based on the

graphical observation. Hence, if we assume the convergence of (. - X•.) to

be geometric, then ;.. - .k = c/Sk where c is a constant and 8 is a constant

greater than one. Using this to solve for 8 in terms of the .k, we see that

8 = (.k -. k-l)/(;.k+1- -;k). From our previously computed values of Xjk, we

see that 8 - 4.6692, which is called the Feigenbaum constant, named after the

American scientist and mathematician Mitchell Feigenbaum, who discovered

it. Using this constant to solve for X., we find that X. - 3.5699456. Hence,

with X = A.., the logistic map is chaotic. (As an aside, the Feigenbaum

constant has been found in many different dynamical systems. For example,

models for electrical circuitry, optical systems, and economic cycles, as well as

physical systems such as chemical reactions, erratic heart behavior, and even

dripping faucets, have all exhibited the Feigenbaum constant when viewed in

the proper phase space. With its value now known, the number of

dynamical systems where the Feigenbaum constant is found is increasing

quite rapidly.)

- 2
f(x f_ • (x)

0 X 10 X

Figure 4.20 The first and second iterates of the logistic equation.
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This "period-doubling route to chaos" was one of the first routes to chaos

understood by mathematicians. It has helped biologists understand the many

different results associated with systems modeled with the logistic map.

While this discussion about bifurcations and the period-doubling route to

chaos has been mostly geometric and intuitive, there is a rigorous underlying

mathematical theory validating these concepts. However, this theory

requires an understanding of "kneading theory," an elaborate version of

symbolic dynamics that is beyond the scope of this thesis.

While the logistic map is very restrictive (in that it models only a single

species interacting with a fixed environment) it still provides a great deal of

information about population dynamics. When the model is further refined

with the introduction of another species (i.e., a predator-prey or plant-

herbivore model), the possibility for chaotic behavior increases with the

complexity of the model. Also, the logistic equation has been used by medical

scientists to model the spread of infectious diseases (the x term being the

number who are contagious and the (I - x) term being the number who have

developed immunity), and even by sociologists to model the spread of

rumors.

We now continue our mathematical analysis of the logistic map beyond

the ranges of X that correspond to physical population systems. Specifically,

we examine what occurs with the map Xn+l = ,xn(l - Xn) when X increases

above 4. The simplest way to observe the dynamics is graphically, as shown

in Figure 4.21. As before, all initial values outside of [0, 11 diverge to -m

under infinite iteration. Notice now, however, that there is a set of points

inside [0, 1] mapped outside the interval after the first iteration; thus they
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"diverge to --. Examining the second iteration, we see that the two

subintervals remaining after the first iteration are mapped to [0, 1]; each will

then contain a smaller copy of the original map, and hence a subinterval

mapped outside of [0, 11 (see Figure 4.22). In fact, if we consider the set of

points which do not eventually diverge to -.o, by this construction we obtain

a Cantor set of points remaining in the interval after infinite iteration for

X > 4. Values of the interval [0, 1] mapped outside of the unit interval, and

hence diverging to -@, are said to be values that escape under iteration of f.

The value of X for which the interval (1/3, 2/3) escapes under the first

iteration of f can be found by letting 1 = W(1/3)(1 - 1/3), which yields X = 9/2.

However, iterating the logistic equation with X = 9/2 will not yield the

classical Cantor set, since the subintervals created in the second iteration will

be skewed and will not be exact middle-thirds intervals. In fact, the point

f(X) Af(x) - x

Figure 4.21 The logistic equation with X > 4 and the interval that escapes.
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f(x) f(x) - x

0
Figure 4.22 The second iterate of the logistic equation with X > 4.

x = 1/9 escapes under the second iteration. However, we can also see how a

Cantor-like set of points remains in the set. Considering X = 9/2, we see that

f(1/3) = 1, and since f(1) = 0, with 0 being a fixed point of the map, the point

1/3 forever remains fixed in the set. For X > 4, the logistic equation is chaotic

on a Cantor subset of [0, 11, while on the complement of this set, all orbits

diverge predictably. This contrasts with the logistic equation with 1 = 4,

which is chaotic on the entire interval [0, 11.

L DIFURCATIONS

In the last section we introduced the concept of bifurcations as period-

doubling phenomenon leading to chaos in the logistic map. We now study

the general concept of bifurcation and its interpretation in the real world.

The mathematical theory in this chapter is from Rasband (1990),
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"Guckenheimer (1990), and Seydel (1988), while the particular definitions and

theorems are from Devaney (1989). The examples are taken from Moon

(1987) and Holden (1986).

Bifurcations are normally associated with a change in the physical state of

a system. In population dynamics, one bifurcation is exhibited by a

population changing from tending towards an attracting fixed point to

tending towards an attractive cycle. Changes in the states of other physical

systems (such as water cooling until it freezes, a beam bending under a load

until it buckles, a balloon being blown up until it bursts, or even the crash of

the stock market) are also examples of bifurcations. Clearly, some of these

behaviors have such complex and intricate mathematical models that it

would be virtually impossible to quantify them and determine the exact

nature of the bifurcation. Nevertheless, there are several systems which have

been modeled successfully and for which the mathematical analysis of

bifurcation accurately predicts gross changes in the state of the system.

Mathematically, there are several types of bifurcations. FMist we discuss

those that occur in one dimension (as with our previous example of the

logistic equation). In the logistic equation, the bifurcation occurs as the

parameter value X is varied until it passes through certain values which

changed dramatically the behavior of the system. This example suggests we

consider families of functions of real variables, where the functions depend

"smoothly" on a parameter. Thus, define g(x, ).) = fj(x), where f(x) is a C-

function of x for each fixed X., and g(x, X) depends smoothly on L The

logistic equation g(x, X) = f;(x) = Xx(1 - x) is one such family.
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We first present a general result about bifurcation theory that applies to

all one-dimensional bifurcations. Then we give specific examples of typical

bifurcations and physical systems that behave similarly in the real world. The

general result is that bifurcations occur only near non-hyperbolic fixed and

periodic points. (Recall that a hyperbolic periodic point is one where

I (fn)'(p) I * 1, where n is the prime period of the point, for a fixed point,

n = 1.) While the theory applies to both fixed and periodic points, we present

it here only for fixed points. Recalling further that a fixed point p is an

attractor if I f(p) I < 1, and a repellor if I f(p) I > 1, we would expect to find

interesting behavior as I f(p) I passes through 1. Such points p are the only

points where bifurcations can and do occur.

BIFURCATION THEOREM. Let f). be a one parameter family of functions,

with p a hyperbolic fixed point for some fixed X& i.e., fo(p) = p and

f',.(p) * 1. Then there exist intervals, I about p and N about I, and a

smooth function h: N--I such that h0.0) = p and f;(h(.)) = h(X). Moreover,

fX has no other fixed points in L

PROOF. Consider the function defined by G(x, X) = fx(x) - x. By hypothesis,

G(p, )4 = 0, and oDG/Nx I (p, )o) = f•'(p) - I 0. By the Implicit Function

Theorem, there are intervals, I about p and N about Xo, and a smooth

function h: N--I such that ho) = p, and G(h(;.), X) = 0 for all X E N.

Moreover, g(x, X) * 0 unless x = h(X). This completes the proof.
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A graphical demonstration of this theorem is shown in Figure 4.23. The

graph shows that nearby graphs fxj and fX must have the same property for

a sufficiently small interval about AO, because the graph of fX meets the line

y = x at an angle at (p, p) and since f varies smoothly with X. Hence, there is

only one fixed point near p for X in some neighborhood of ko. At this

point there is a function g;. that is topologically conjugate to fx via the map

H.(x) = x - h(X) for which the origin is always a fixed point. This fact allows

us to study maps with 0 as a fixed point, and apply the results to any map fL

with a nonzero fixed point. (To see this, consider fJ with f(h(X)) = f(X). If

g)L(x) = f)(x + h(O)) - h(X), then gX(O) = f)(h(,)) - h(;) = 0 for all X, so 0 is

always a fixed point for g.) Thus it suffices to present our complete results for

one-dimensional bifurcations using functions whose fixed point is the

origin.

- 2S~f

Pl Ip P2

Figure 4.23 Schematic of the Bifurcation theorem.
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Now that we know that bifurcations occur at non-hyperbolic periodic

points, we are prepared to study specific types of one dimensional

bifurcations. The first, and perhaps mathematically the simplest type, is the

tangent bifurcation (also called the saddle-node). The family fI.(x) = Xex, for

X>O, has a bifurcation at x=O when X=I/e. If X> 1/e the function f• has

no fixed points, and f;Ln(x) -- for all x. When IL = 1/e, the function has one

fixed point at p = 1. This point is attracting from the left and repelling from

the right. This last condition, which may occur for a non-hyperbolic fixed

point, is called semi-stable. For values of X < l/e, f). has two fixed points, pi

and p2, with pi attracting and P2 repelling. Graphs of these three cases are

displayed in Figure 4.24, and the graphical analyses are left to the reader.

fi(X) f (X) f (X)

xt- x
P1  P2

Figure 4.24 Graphs of f(x) =Iex with (1) X < 1/e (2) X = 1/e (3) X)> 1/e.

We can see that this bifurcation occurs as the graph of fx becomes

tangent to the line y = x. First one, then two, fixed points emerge as the

parameter passes through the critical value. We can also verify that this
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bifurcation occurrs at a non-hyperbolic fixed point p = 1, since fi/e'(l) -

(1/e)el = 1. This bifurcation gets its name from the way f) approaches the

line y = x tangentially. The bifurcation diagram for the function fi/e,

plotting the fixed points p on the vertical axis versus X is shown in Figure

4.25.

x

11

1/e "(not to scale)

Figure 4.25 Bifurcation diagram for f(x) = Xex.

The mathematical conditions guaranteeing the occurrence of a tangent

bifurcation, and the resulting bifurcation, are as follows.

THE TANGENT BIFURCATION. Given that

1. (o) = o,

2. 4o(0) = 1,

3. f'o"(0) *0, and

4. ok/A I.•o •10.
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'Then there exists an interval I about 0, and a smooth function h: I-+R

satisfying h(O)= XO, such that fh(x)(X) = x. Moreover, h'(O) = 0 and h"(O) *0.

The tangent bifurcation has received considerable attention of engineers

recently because it is known that a beam or small arch bending under a load

undergoes a tangent bifurcation at its buckling point Additionally,

astronomers have identified the equilibrium response of massive cold stars

with the tangent bifurcation.

A bifurcation familiar to us from the analysis of the logistic equation is

the period-doubling bifurcation. We now give another example of the

period-doubling bifurcation. Consider the family of functions f.(x) Xex, for

X < 0. Graphs of these functions are shown in Figure 4.26. When X = -e,

fL(-I) = -1, and I f'(-I)I f I-e(e-1)I = - I- i 1; thus p = -1 is a non-hyperbolic

fixed point. We would expect a bifurcation to occur as X passes through the

critical value -e, and indeed one does occur. When X > -e, the fixed point p

is attracting, and when X < -e, it is repelling. Hence, the nature of the fixed

point changes as X passes through -e, but this is not all that occurs. When X

< -e, the graph of f;L2(x) is an increasing function that is concave up if

f)(x) < -1, and concave down if fh(x) > 1. Since fL2(x) has two fixed points,

this corresponds to a two-cycle in f;(x). Figure 427 shows the bifurcation

diagram for the above example, again plotting the fixed point and the periodic

points on the y-axis against the parameter L.
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,, f() f( )

10.x #-x

Figure 4.26 Graphs of the family f)L(x) =ex for X > -e and X < -e.

-e x
---- ýi poi nt

fixed point 1is atracting
is repelling

IAwo-cycle

Figure 4.27 Bifurcation diagram for f(x) = Xex with X < 0.

In a period-doubling bifurcation, as the parameter passes through its

critical value, the attracting fixed point becomes repelling and a cyde of period

two emerges. Of course, as we saw with the logistic equation, a bifurcation

can also occur that makes an attracting n-cycle repelling and creates an

attracting 2n-cycle; hence the name "period-doubling." The formal

mathematical characterization of the period-doubling bifurcation is given in

the following result.
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'THE PERIOD-DOUBLNG BIFURCATION. Given that

1. f;.(0) = 0 for all X in an interval about X0,

2. f,'(0) = -1, and

3. )(f) 2)'/•X I X-)o(0) *0.

Then there is an interval I about 0, and a function h: I-+R, such that

fh(x)(x) * x, but f(x)2 (x) = x.

As shown earlier, without loss of generality we are able to consider functions

with fixed points at the origin and apply the same results in the general case

for arbitrary fixed points. The proofs of both results concerning bifurcations

can be found in Devaney (1989), and involve little more than application of

the Implicit Function Theorem and knowledge of partial derivatives.

A situation where period-doubling bifurcations have been observed

occurs in the field of electrocardiology. Electrochemical events in the heart,

monitored by electrocardiograms (ECG), show periodic activity within the

atria and ventricles of the heart. Abnormal cardiac rhythms, such as

arrhythmia, have long been referred to as "chaotic heart action" (in the

descriptive, non-mathematical sense) by cardiologists. Mostly, these

fibrillations, or chaotic heart rhythms, have been recorded on ECGs

immediately prior to a patient's death. By concentrating on the heart's

natural pacemakers, called ectopic foci and which are located throughout the

heart, cardiologists have found that in arrhythmia, the rhythm of the heart

undergoes a series of period-doubling bifurcations leading eventually to

chaotic behavior (in the precise mathematical sense). While the human

heart requires a much more complex model than the one-dimensional
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"dynamical system, there is a high correlation between the period-doubling we

have studied and the period-doubling on the ECG. Cardiologists are using

this new theory to try to explain what actually happens in the heart in order

to prevent or cure the condition. A current solution to this problem is to

identify patients who are susceptible to arrhythmia and implant in their

chests a device that detects fibrillations and gives the heart an electronic

"kick" out of its period-doubling path. This device has proven successful, but

it has been difficult to identify the patients who will benefit from its use.

Turbulence is one of the classical and unexplained phenomena in

physics. In the past it has been so inaccessible to physicists and engineers that

systems have been designed normally with "fudge" factors, or factors of safety,

designed to compensate for the effects of turbulence. However, the issue of

turbulence has rarely been directly taken on. Recently, in a physical model

that creates turbulence in a very simple fluid setting, scientists have observed

period-doubling bifurcations in the fluid leading directly to the onset of

turbulence. These observations may be the first steps towards an

understanding of this elusive behavior.

A few more examples of how a changing parameter in the real world can

lead to bifurcations will emphasize the importance of studying this concept.

In the logistic equation it is reasonable to assume that the parameter X, which

measures the species' interaction with its environment, does not change too

drastically from cycle to cycle. On the other hand, in a fluid system, it is just

as reasonable to see how the changing velocity of a flow can change a

parameter quickly enough to induce the period-doubling bifurcations that

lead to turbulence. So it might seem reasonable to surmise that the panel
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flutter on a supersonic aircraft could be avoided through a careful design that

stays away from dangerous parameter values. However, not every

atmospheric condition can be predicted accurately by a model, or duplicated in

a wind tunnel. Moreover, atmospheric phenomena, such as ice buildup on

wings or wind shears, can quickly push parameters into critical regions. In

complex systems one can rarely anticipate every set of parameter values,

which is an important reason to pay careful attention to parameter space.

J. SARKOVSKIPS THEOREM

We now present another remarkable result about one-dimensional

dynamical systems due to the Russian mathematician, A. N. Sarkovskii. The

development here is from the article by Devaney (1989). First, order the

positive integers in the following manner.

3*5*729s...-

2-3 * 2"5 * 2"7 * 29 '9

22-3 * 225 * 22.7 22-9...9 .

23.3 * 23.5 * 23.7 * 23- *.

.-.. 24 23 * 22 * 2 2 1.

Here, we have first listed the odd numbers in ascending order, followed by

two times the odd numbers, then 22 times the odd numbers and so on,

through every positive integer power of 2 times the odd numbers, finally

followed by the powers of 2 in descending order. Given this ordering of the

positive integers, we present Sarkovskli's theorem.
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* SARKOVSKII'S THEOREM. Suppose f. R-+R is continuous. If f has a

periodic point of period n, then f also has a periodic point of period k for

all k with n * k in the above ordering.

While this result only holds for one-dimensional systems, it is

remarkably powerful due to its lack of hypothesis. In fact, the only

requirement on f is that it be continuous.

Rather than proving Sarkovskii's theorem itself, we prove a special case

in what follows. This proof is found in the article by Devaney (1989) and

differs from the complete proof of Sarkovskii's theorem by requiring less

bookkeeping. The full proof of Sarkovskii's theorem can be found in

Devaney (1989).

PROPOSITION. Suppose a continuous map f: R-+R has a cyde of period 3.

Then f has periodic points of all periods.

PROOF. The proof depends on two observations. Fu-st, if I and J are dosed

intervals with J I and f(I)nJ, then f has a fixed point on L (Thisis

similar to the result about fixed points we proved in Section HC). The second

observation is as follows: suppose A0, A 1,..., An are dosed intervals such

that f(Ai) Aj+l for i = 0, 1,. .. , n-1. Then there exdsts at least one

subinterval J0 of A0 which is mapped onto A1. Similarly, there is a

subinterval J1 of A1 mapped onto A2, and hence a subinterval J1 of J0 such

that Al m f(J1) and f2(h) = A2. Continuing in this manner, we obtain a

nested sequence of subintervals which map into the various Ai, in order.
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* To prove the proposition, let a, b, and c be such that f(a) = b, f(b) = c, and

f(c) = a. With only a slight loss of generality, assume a > b > c (the other case

is handled similarly). This hypothesis is shown in Figure 4.28.

t(x),

V so Xc b a

Figure4.28 Athree-cyclewith f(a) =b, f(b)=c,f(c) =a, anda>b>c.

Welet To=[b,a] and Ii=[c,b]. Byour assumptions, f(1O)nII and

f(i) m 16 u Ii. Figure 4.27 shows there is a fixed point between c and b.

Similarly, P has fixed points between a and b, so at least one of these points

must be of period Z Fixing n > 3, we now produce a cycle of period nL

We first find a nested sequence A0, At,..., An-2, of subintervals of I as

follows: let A0 = II. Since f(It) D 11, there is a subinterval Al of A0 such

that f(AO) = A0 =- I. By induction, we can find a subinterval An-2 of An-3

such that f(An-2) = An3, P(An-2) An-4,.. ., and f' 2(An.2) = A0 = 11. Since

f(Ii) D To, there is a subinterval An-i of An-2 such that fn'I(An-1 ) = 10. Finally,

since f(TO) z) II, we have ff(An.1) n II = An-1. Hence, fn has a fixed point in

An-1 from the first observation. We now show this point has period n under
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f. Since Ij = fi(An-1) for i =0, 1,...,n-2, but I O fn-1(An.-), and fn(An) • I1,

this point has its first n-2 iteratesin Ii,thenjumpsto I0,inthe n-1

iteration, and finally back to I1. This completes the proof.

In addition to the above proposition, another corollary to Sarkovskii's

theorem states: If f has a periodic point which is not a power of 2, then f

has infinitely many periodic points.

Sarkovskii's theorem provides considerable information about a

function. For example, it would be very difficult to check directly whether

the function fRx) = 1 + (5/2)x - (3/2)x2 is chaotic. However, since f(O) = 1,

f(1) = 2, and f(2) -0, the function has a three-cycle. Thus Sarkovskii's

theorem tells us it has cycles of all periods. Hence, we automatically know it

is chaotic without having to check the three defining conditions.

If we consider the period-doubling bifurcations as a route to chaos, then

only finitely many periodic points must have the periods 1, 2, 22, 23, 24,...,

2N for some N. Then as the parameter varies and the dynamics of the

system become more complex, we introduce periods in a specific order 2N+I,

2N+2, .... This argument does not claim that the new orbits appear as period-

doubling bifurcations, but that something similar must occur.

We cannot derive a converse to the theorem from the special ordering. If

we find a cycle of period k, and n * k in the ordering, there is no guarantee

that a cycle of period n exists.

While we used a graphical analysis to show that the Baker map

f(x) = 2x (modl) is chaotic, we now confirm this using Sarkovskii's theorem.

Although the Baker map is not continuous, since every iterate has fixed
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points on [0, 1], we can apply the above proof of the proposition directly to it.

Thus, if we can find a three-cycle of the Baker map, we will know it is chaotic.

But that is easy: since the points 1/7,2/7, and 4/7 form such a cycle, the

Baker map is chaotic.

Another example using Sarkovskii's theorem to find chaotic behavior is

with the function fRx) = x2 + c, where c = -1.755. Using a computer, we can

verify the attracting orbit of period 3 given by fRO) = -1.755, f(-1.755)

1.325 (to four decimal places), and f(1.325) = 0. This three-cycle guarantees

cycles of all periods and an infinite number of periodic points. Nevertheless,

regardless of the initial value, the orbit is always attracted to this three-cycle.

But then where are the other periodic points if only three are found by

computational iteration? The answer is that all other cycles are repelling and,

because of computer round-off error, iterates always move away from a

repelling cycle (unless the points are rational numbers represented exactly up

to the precision of the computer). This example further illustrates the

sensitive dependence on initial conditions of chaotic dynamical systems.

Now why, of all the infinite orbits, is only one of them attracting? This

question is extremely complicated in general. However, in the case of our

specific example it can be answered using a result from complex analysis. For

a complex analytic map, each attracting orbit attracts at least one critical point

for the map. Now the map f(z) = z2 - 1.755, is an analytic function with only

one critical point z = 0. Hence the function has only one attracting orbit.
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K THE QUADRATIC FAMILY REVISITED

The last example showed another member of the quadratic family of

maps; namely, f(x) = x2 + c. We now study this map in greater detail as we

vary the parameter c. The results in this section are from Falconer (1990) and

the article by Devaney (1989).

First note that for c > 1/4 the graph of f(x) = x2 + c lies above the

diagonal y-=x and fn(x)-*oo for all x e R. For c = 1/4, the graph of f(x) is

tangent to the diagonal when x = 1/2 (which is a single fixed point). Finally,

for c < 1/4, f has two fixed points which we denote by pi and p2 where

pi <p p. This is an example of the tangent bifurcation as c passes through

the value 1/4. These three cases are shown in Figure 4.29.

f (X) f X) ALf(x)

CA4C -1/4 C < 1/4

Figure 4.29 Graphs of f(x) = x2 + c for c > 1/4, c = 1/4, and c < 1/4.

123



Now observe that for all c<1/4, p2>1/2,so If(p2)9 = 12p21 >1.

However, for -3/4 < c < 1/4, If'(p1) I < 1 since -1/ 2 < Pl < 1/ 2. Finally for

c < -3/4, I f'(pl) I > 1 since pI < -1/2. This demonstrates that after the tangent

bifurcation occurs (as c passes through 1/4) the fixed point Pi is attracting

and p2 is repelling. However, as c passes through -3/4, P1 also becomes

repelling (and in fact, a two-cycle forms around pi). The graphs of fAx) = x2 + c

as c passes through -3/4 are shown in Figure 4.30. As c continues to

decrease, we get another sequence of period-doubling bifurcations, similar to

those we saw with the logistic equation. The frequency of these bifurcations is

also governed by the Feigenbaum constant.

f(x) f(x)

Ptt

C>-314 < -3/4

Figure 4.30 The graph of f(x) = x2 + c as c passes through -3/4.

We have developed three ways to determine if this period-doubling leads

to chaos. The first is to graph f(x), and f2(x) through fn(x), for certain values

of c and observe the fixed points of these graphs. The second way is to solve

algebraically for the roots of Pf(x) = x and observe the fixed points as the roots
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of these polynomials. For the case f2, solving the equation f2(x) = x yields the

fourth-order equation (x2 + c)2 + c = x, or x4 + 2cx2 - x + c2 + c = 0. Since we

already know two of the roots (pi and p2) for any given value of c, we can

solve directly for the other two. However, as n increases, it becomes very

difficult to solve for the roots of fn(x). Third, we can simply find a three-cycle

for certain values of c (for example c = -1.755) and appeal to Sarkovskii's

theorem as proof that periods of all other orders do exist.

Continuing to analyze the family f(x) = x2 + c, we see from Figure 4.28

that for all c < 1/4, if I xo I > p2, then fn(x0)-+-. Thus, we can focus our

attention on the interval I = [-p2, p2] where all of the interesting dynamics

occur. Let us further restrict our attention to the range of parameter values c

< -2. If we analyze this function on a computer for almost any initial value,

the iterates of f to go to infinity. However, as shown below, there are many

orbits which do not escape under iteration of f.

The graph of f for c < -2 is shown in Figure 431. If we consider the

interval I - [-p2, p2] note that there is a subinterval Ao of I that maps to

values outside of I, hence all points in A0 will escape to Go. Consider the

graph of f2, a similar analysis to the one performed for the logistic map with

X > 4 shows that two subintervals of I - A0 are again mapped outside of I, so

again points escape to @.. The second iteration of f on the interval I is

shown in Figure 4.32. The subintervals that escape I on the second iteration

are labeled A1 and A2 in the figure.

Analyzing the points that remain in I after infinite iteration, we deduce

a Cantor set has been constructed on L While it is not necessarily the classical

Cantor set, nevertheless, it contains no intervals despite an infinite number
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&f(x) /

(P2, P2)

Figure 4.31 The graph of fRx) = x2 + c for c < -2.

Figure 4.32 The graph of f2(x) for c < -2.
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'of points. (As we mentioned in Section IIE, this could be an example of a "fat"

Cantor set, depending on the value of c). We now define the set

A={xe I: fn(x)e I V nO}),

and assert that A is a Cantor set.

The dynamics of f on R - A are quite simple because every initial value

tends to +-o under infinite iteration. We want to know what happens to the

set A. To determine this, we simplify the analysis through symbolic

dynamics. Recall that the shift map on code space a. 1-+, is a continuous

mapping. We now try to relate a and f. When we remove the interval A0

from I, two subintervals remain, denoted by I0 and I1 (see Figure 4.33).

Hence, if x e A, then ffn(x) e T0 u 1 1 for all n > 0. Next define the itinerary of

x by S(x)=(sOsls2...) where sie (0, 1) and si = k if and only if fi(x)e Ik.

Sf(x)

(P2' P2)

10 A0  11

Figure 4.33 The subintervals Io and Ii.
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We now show that S: A-+I is a homeomorphism. First, to see that S is

one-to-one, let x, y e A and suppose S(x) = S(y). Then for each n, fn(x) and

fn(y) both lie on the same side of A0 . It follows that f is monotonic on the

interval between fn(x) and fn(y). Hence, all points in this interval remain in

I0 u I1. This observation contradicts the fact that A is a Cantor set and

contains no intervals, so S is one-to one.

To see that S is onto, for a closed interval J, set fn(j) = (x e I: fn(x) e J). If

I z J, then f'-(J) consists of two subintervals, one in I0 and one in I1. Let

s e I with s = s0s1s2. •., and define

Is...sn = (x e I: x E Iso, f(x) e s1,..., f(x) e Isn,

so Iso...sn = Iso n f-'(Isi) n. . n f-n(Isn). We claim that the Iso...sn form a

nested sequence of nonempty closed intervals as n-+o. Note that

Iso...sn = I6o c f-n(Is5 ...sn). By induction, we assume that Isl...sn is a nonempty

dosed subinterval so that f0 1( _3...n) consists of iwo subintervals, one in To

and one in 11. Hence, Iso...sn is a single dosed subinterval. These intervals

are nested since Iso...sn = I60...sn-1 n fl(Is) c Iso... -1. Hence, the intersection

w.sn is nonempty for any n > 0. Note that if xe r-qQs...n, then

x e Lo, f(x) Ie4,.. ., so that S(x) = sOsls2.... This proves that S is onto.

Since S is one-to-one and onto, it follows that S-1 exists. Hence we need

only show that S is continuous to prove it is a homeomorphism. Thus,

choose xe A andlet S(x) =sOSlSs2.... Let e > 0, and choose n suchthat 1/2n

< e. Consider Ito._tn for all possible combinations of to, t1,..., tn. These sub-

intervals are disjoint, and A is contained in their union. Choose y e A and

8 suchthat Ix-yI <8. Then ye Iso...sn, and S(x) and S(y) agree for the first

n+1 terms. Hence, by the metric on code space -2, d(S(x), S(y)) < 1/2n < e.
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Thus S is continuous. Trivially, S-1 is also continuous; hence, S is a

homeomorphism.

Since S: A--7 is a homeomorphism , we use topological conjugacy to

show that f has the same dynamics as the shift map a on code space 12. The

commutative diagram for this relationship is shown in Figure 4.34. Since we

know ; is chaotic on L f is chaotic on A through topological conjugacy.

A f -. A

I~s Is

Figure 4.34 The topological conjugacy between f: A--A and a :-4.

We now return to the map f(x) = x2 - 1.755 to learn more about it

through its symbolic dynamics. Since it has a three-cycle, -1.755, 0, and

1.325.. . , Sarkovsldi's theorem guarantees it is chaotic. However, we see we

could have discovered this feature without Sarkovskii's theorem.

We start by finding three open intervals, O1 about 0, 02 about -1.755,

and 03 about 1.325. Select these such that Oi contains the closure of f(OO),

and 01+1 = f(Oi). We can always make this choice because f is a continuous

map (although in practice, the use of a computer would help). Now let I0

denote the dosed interval between 01 and 03 and let Ii be the dosed

interval between 02 and 01. This relationship is shown schematically in

Figure 4.35. We may choose each Qi such that I (f3)'(x) I > 1 on Io u Ii. We

then have f(Io) D II and f(11) D To U I1, so each interval is stretched over its

image.
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-1.755 0 1.325
-. ,( I ) I ) ( I ) .-.

02 1 ] 1 [ 12 3

Figure 4.35 The dosed intervals I and the open intervals 0.

We now introduce symbolic dynamics. Let A = (x: fn(x) e ID u I1 V n 2 0).

We know that A is a Cantor set. To model the dynamics of f on A, consider

modified code space r' where

' = (s1s2s3.. : si e (0, 1) and sk = 0 =* sk+1 = 1),

i.e., this is just 12 with no adjacent pairs of Os. If we now define the map

S: A--+' as above, we see that the condition f(JO) D Ii forces the condition of

no adjacent Os in r'. The diagram in Figure 4.36 shows how f commutes

with a through S. Hence the shift map a: •r'-' provides all of the

information about the dynamics of f. A--A. Thus there exist points of all

periods in r'. In fact, the point 0111.. .10111.. .10..., with blocks of n-I

repeating Is, is the same point found in the proof of the special case of

Sarkovskii's theorem.

A •f .. A

SIs Is

Figure 4.36 Topological conjugacy between f and a.
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L JULIA SETS

Julia sets, along with the Mandelbrot set, have perhaps been the most

significant factors in generating interest in chaos among laymen. The reason

is because the intricate and beautifully colored computer images shown as
"pictures of chaos" are normally pictures of Julia sets. Moreover, the

"movies" of these images, exploding across the screen, are simply the Julia

sets viewed under the continuous changing of a parameter.

Julia sets were actually discovered in the 1920s by the French

mathematicians Gaston Julia and Pierre Fatou. However, their true beauty

and intricate detail were not fully realized until the 1970s when computer

graphics allowed for their inspection in detail. The concept of a Julia set can

be understood with only a basic understanding of complex numbers. On the

other hand, a formal and mathematically rigorous treatment of Julia sets

requires a theory of complex analysis beyond the scope of this thesis. Here we

present only a cursory survey of Julia sets in their ambient space, the complex

plane, still treating one-dimensional maps in the iterated function systems.

While many of the references cited discuss Julia sets, the presentation here is

from Keen (1989) and Falconer (1990). There are many equivalent definitions

of Julia sets, but the one we present is perhaps the simplest to demonstrate

and understand.

DEFINITION. Given a mapping f: C--C of the complex plane, its Julia set

J(f) is the closure of the set of repelling periodic points of f.
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* . As a simple example, consider the map f(z) = 2z. Under infinite iteration

of f, all points in the complex plane excluding the origin tend to o@ (or to be

more precise, the point at o.). The origin is a fixed, and hence periodic point

of this map. Since iteration of any point other than the origin tends away

from it, the origin is repelling. This result is also verified from If'(0) I = 121 >

1. Since the only repelling periodic point of this map is the origin, which is

its own closure, the Julia set for f(z) = 2z is the origin.

We now present a less trivial example which demonstrates many

interesting properties of Julia sets. Consider the map f(z) = z2 + c for c = 0.

All points inside the unit circle I zI < 1 tend to the origin under infinite

iteration. Thus the origin is an attracting fixed point of the map. In fact,

I f'(0) I = 12(0)1 = 0, which also verifies that the origin is attracting. Moreover,

ai points I zI > 1 outside the unit circle tend to -o under iteration of this

map.

Now consider the standard unit circle, I z I - 1. These points are

represented by z - e10 . Then z2 = e020, which is exactly the chaotic map of the

unit circle f: SI-+SI, where f(0) = 20, studied earlier. We know the periodic

points of this map are dense on the unit circle. Since the periodic points of

f(z) = z2 are dense on the unit circle, every point on the unit circle is the limit

of a sequence of periodic points of f. Thus, the closure of the periodic points

of f is the unit circle. Moreover these points are repelling. To see this, recall

that points inside the unit circle converge to the origin, whereas points

outside the unit circle diverge to the point at infinity. Furthermore,

If'(z)l IIzI1. = 12(1)1 =2> 1, verifying that these points are repelling. Hence,

the Julia set for the function f(z) = z2 is the standard unit circle.
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Another concept associated with a Julia set is that of the filled Julia set,

denoted F(f). When the Julia set is a closed curve, the set F(f) is the union of

J(f) with its interior. The filled Julia set is the set of points that do not escape

to - under infinite iteration of f. For the example f(z) = z2, the filled Julia

set is the dosed unit disc, F(f) = (z: Izi < 1). As an aside, the complement of

the Julia set is called the Fatou set and is sometimes denoted F(f) as well,

although Jc is also used. Loosely speaking, J(f) is the set containing the

"bad" (i.e., chaotic) behavior, while the Fatou set is the "good" set, possesing

the well-behaved dynamics.

Having introduced the concepts of Julia sets and filled Julia sets in this

simple setting, we now describe an algorithm for generating computer images

of these objects. If we superimpose the complex axes on a computer screen to

an appropriate scale, then points in the complex plane correspond to pixels on

the screen, although this relationship is certainly not one-to-one. Given a

function f(z), we can iterate each pixel. Since we are interested in the points

that escape to .o, a bound (normally very large) can be set which we call I Z 1,

and above which an iterate is considered as having escaped. Next select k

integers N 1 <N 2 < ... <Nk-=N. Color the screen with k+1 colors based

on the following algorithm: as a point is iterated, if it has not escaped after N

iterations, color it black. If it escapes (goes beyond I Z 1) between 0 and N1

iterations, assign to it another color (say, red). If it escapes between Nj and

N 2 iterations, color it with yet another color (for example, yellow). Continue

in this manner until the entire screen has been colored. Selecting a large

value for k provides more detail, which can be refined further by

experimentally adjusting N and I Z I with respect to each other. The part of
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the screen colored black (if we have chosen N, I Z I, and the scale

appropriately) is the filled Julia set for f, and this region's boundary (provided

it is connected) is the Julia set itself. The colored bands around the Julia set

are contours corresponding to the various escape times of points in the

exterior of the Julia set. The reason the complement of the filled Julia set is

colored is because of the finite scale of the computer screen: there can be great

detail occurring within the area of a single pixel and, while the complete Julia

set is not revealed by just the black area, much can be determined about its

border by examining the distorted contours surrounding it.

For the example f(z) = z2, coloring the screen based on this escape time

algorithm produces a black disc with a sequence of concentric colored circles

around it (which in itself is not particularly interesting). However, recalling

the family of functions fc(z) = z2 + c, as the parameter c is varied some very

interesting results occur. Unfortunately, while this Julia set has many

fascinating properties, an advanced level of complex analysis is required to

establish even its most basic properties. The required concepts include

families of normal functions, the Arzela-Ascoli theorem, and Montel's

theorem. These results are beyond the scope of this thesis, but an excellent

summary of them is found in Falconer (1990), and we provide a synopsis of

them at the end of this section. Nevertheless, we can still provide a brief

description of some of the salient characteristics.

As the parameter c is varied away from the origin, the Julia set (the unit

circle) begins to continuously distort and take on different shapes. Closer

inspection reveals that the boundary appears to become infinitely detailed

and self-similar; in fact, it becomes fractal. (Even with c = 0, the boundary of
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the filled Julia set is infinitely self-similar, although in a trivial manner.)

While we saw that the dynamics of f on J(f) for c = 0 are chaotic (since they

share the properties of fRO) = 20) they continue to be chaotic on J(f) as c

varies. For the quadratic family f(z) = z2 + c, as c is varied the Julia set varies

from a circle, to a dosed curve with "bulbs" that are "pinched" together at a

single point, to "dendrites" which are fractal structures with no interior, to

"dust" which is a set of disconnected points which are scattered about a region

of the complex plane, similar to the Cantor set. For some Julia sets with

fractal boundaries, like the Koch snowflake, the lengths of the boundaries are

infinite. A further result about Julia sets is that they are either connected

(meaning they consist of one solid piece) or totally disconnected (meaning

they have a structure similar to Cantor dust). The Julia sets for various

values of c are shown in Figure 4.37.

Without going into too much detail, we provide a brief synopsis of the

most important ingredients of the mathematical theory behind these results.

For analytic functions in C (i.e., those that are infinitely differentiable in the

complex sense) techniques of complex variable theory can be used to establish

the basic properties of Julia sets.

It can be shown that an alternative (but equivalent) way of defining the

Julia set J(f) for polynomials f is as the set of all complex values z for which

the family {fk(z)) k = 1, 2,... is not normal. Loosely speaking, a family of

complex analytic functions is said to be normal if it possesses some expecially

strong convergence properties (called "uniform" convergence) on compact

subsets of a given open set. Using a powerful result from complex analysis

known as Montel's theorem, it is possible to demonstrate that if f is a
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CeV)

W.4
A. . y~ 9,

Figure 4.37 Julia sets of the function f(z) z2 + c for (a) c =-1+ .1i;
(b) c =-.5 +.5i; (c) c =-1 +.05i;- (d) c =-.2 +.75i; (e) c =.25 +.52i- (U) c=
-.5 + .55i; (g) c = .66i; (h) c = -i. The figure is from Falconer (1990, p. 213).
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polynomial, then J(f) is non-empty, compact (closed and bounded), contains

no "isolated" points, and much more. Note that this is consistent with what

we have seen with the quadratic family, even in the case when J(f) is "dust."

It should be pointed out that the above results do not necessarily hold for

non-polynomial complex analytic maps. The Julia set for the exponential

map f(z) = ez, for example, is the entire complex plane. Of course,

polynomial functions are not the only ones that generate interesting Julia

sets. Some of the trigonometric families, such as X sin z, also provide very

interesting characteristics as X varies.

M. THE MANDELBROT SET

The Mandelbrot set is often associated with intricate computer graphics.

It has been described from "the most complex object in mathematics" to "the

most beautiful object in mathematics." While Julia sets are found in range

space of a complex function, the Mandelbrot set lies in parameter space,

which is the complex plane when the parameter is a complex number. Like

the Julia set, almost every reference cited discusses the Mandelbrot set.

However, th particular presentation here is based on Branner (1989) and

Falconer (1990). There are two equivalent definitions of the Mandelbrot set,

and both of them are presented here.

One definition of the Mandelbrot set for fc(z) = z2 + c is the set of values

of c for which the associated Julia set J(f) is connected. (This definition

stresses the connection between the Mandelbrot set and Julia sets.) As

mentioned in the last section, the Julia sets for f(z) = z2 + c vary from being

totally connected to "dust." The values of c for which the Julia sets are dust
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do not belong to the Mandelbrot set. An equivalent definition, which is

perhaps easier to understand, follows.

DEFIMITION. The Mandelbrot set fl is the set of complex values of c for

which the origin does not escape to - under infinite iteration of f(z) = z2 + c.

A picture of the Mandelbrot set in the complex plane is shown in Figure

4.38. The figure is from Falconer (1990, p. 205). We have already seen that for

c > 1/4 on the real line, all values of x including the origin go to infinity

under iteration of fAx) = x2 + c; for c < -2, the origin also escapes. Hence, we

know that the Mandelbrot set contains the interval [-2, 1/4] on the real line.

However, the situation is not nearly this simple when c varies in the

complex plane.

Im

0

! I

-2 -1 0
Re

Figure 4.38 The Mandelbrot set.
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Like Julia sets, the Mandelbrot set is infinitely detailed. In fact, it contains

many smaller copies of itself around its border. However, it is by no means

self-similar because it contains many other interesting shapes. Moreover, its

intricate detail varies significantly among the border regions of the smaller,

Mandelbrot-like sets.

Pictures of the Mandelbrot set can also be generated using the escape time

algorithm used to draw Julia sets. Here the coloring of the complement

becomes particularly important because many of the tendrils extending from

the main body of the Mandelbrot set are too detailed to capture on a computer

screen (regardless of the scale chosen), so they are only evidenced by the

distorted contours surrounding them. It is known that the Mandelbrot set is

connected: even points that appear isolated on computer images are

connected to the main body by dendrites too small to be seen on a computer

screen.

The first definition of the Mandelbrot set shows an intimate connection

with Julia sets of the function f(z) = z2 + c, but the Mandelbrot set contains

even more information about the dynamics of the function f. Once again,

however, any rigorous mathematical development of these dynamics

requires the advanced theory of complex analysis. So again we only describe

some of the more interesting characteristics.

The first result is that each "bulb" of the Mandelbrot set corresponds to an

attracting k-cycle of f(z) for a particular value of k. For example, the large

central cardioid corresponds to the values of c for which f(z) = z2 + c has an

attracting fixed point. To see this, note that an attracting fixed point must

satisfy z2 + c = z and I f'(z) I = 12z I < 1. The boundary of this region is given
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'by c = z - z2, where I z I - 1/2. In polar representation, this becomes

c = (1/2) e2xiO - (1/4) e4iO 0• 0 < 2x. These values of c trace out a cardioid

in the complex plane with a cusp at z = 1/4 + Oi. Unfortunately, the periods

of the attractive cycles of the other bulbs do not so easily reveal themselves

mathematically.

It is perhaps not surprising that the periods of the bulbs along the real axis

are in direct correspondence with the bifurcations found for the map

f(x) = x2 + c. Recall that for this latter map, a tangent bifurcation occurs at

c = 1/4, and a series of period-doubling bifurcations begins as c decreases

through -3/4. Figure 4.39 shows the Mandelbrot set plotted on the same

coordinate axis as this bifurcation diagram. You can see the alignment of the

main bulbs with the period doubling that occurs along the real axis. The bulb

in the "tail" of the Mandelbrot set corresponds to the three-cycle that emerged

out of chaos around the value c = -1.755 studied earlier.

The Julia sets associated with the c values belonging to the MandelbroL

set vary as the period of the attracting cycle varies among the bulbs. Julia sets

for values of c in some of the different bulbs of the Mandelbrot set are shown

in Figure 4.40. Notice that the number of "bulbs" in the Julia sets that are

pinched together at a single point correspond to the period of the cycles of the

Mandelbrot set. For example, the Julia sets for values of c in the main

cardioid are all simple dosed curves which correspond to the attractive fixed

points, whereas the values of c in bulbs that correspond to attractive n-cycles

have n bulbs converging at a single point. Notice also the very thin Julia set

(dendrite) associated with one of the tendrils of Ml. Dendrites occur for

values of c for which the origin is a periodic point of f(z) = z2 + c; for
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--0-2 -07

Figure 4.39 The Mandelbrot set plotted against the bifurcation diagram for
f(x) = x2 + c. The figure is from the article by Devaney (1989, p. 37)...

example the point c = -i as shown in Figure 4.37. Finally, the Julia set

associated with a point not in the Mandelbrot set is totally disconnected.

Remembering that for values of c < -2, the sets of periodic points for the

iterated maps f(x) = x2 + c were Cantor sets (hence totally disconnected) their

Julia sets, by definition, are also disconnected. Thus these points fail to belong

to the Mandelbrot set.
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Figure 4.40 The Julia sets of points in different bulbs of the Mandelbrot set
(see Figure 437). The figure is from Falconer (1990, p. 214).

Another feature of the Mandelbrot set is the existence of a dense set on its

boundary of points, called Misiurewicz points, for which the image of the

Mandelbrot set in parameter space, and the corresponding Julia set in the

range space, look the same up to a rotation (in a sense that can be made

mathematically precise; see Branner (1989)). Figure 4.41 shows a blowup of

the Mandelbrot set and the Julia set around the Misiurewicz point

c - -.101096 + 1(.956287).

The Mandelbrot set occurs in spaces other than the parameter space we

have presented. In fact, it ajpears to be an almost universal geometric shape.

Recall the coloring of the complex plane through Newton's method for the

function z4 - 1 = 0 in Section IVG. If we color the complex plane for different
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Figure 4.41 The Julia set and the Mandelbrot set around a Misiurewicz point.
The figure is from Branner (1989, p. 103).

values of the parameter X for cubic polynomials of the family P,, chaotic

regions are found between the basins of attraction. However, interspersed

within these regions are small copies of the Mandelbrot set. While these

regions have always existed, it has taken present-day powerful computer

graphics to reveal them. As scientists continue to use computers to examine

dynamical systems more closely, we expect that the Mandelbrot set will

appear with increased frequency.

There are, no doubt, other more fascinating properties of the Mandelbrot

set yet to be discovered or proven. Each property reveals something about the

complexity of the iterated map f(z) = z2 + c. While we have not discussed all

known results here, this cursory summary does provide considerable insight

into the complexity of this chaotic mapping.

While the function f(z) = z2 + c appears to be a very specific form of the

quadratic family, it is in fact topologically conjugate to every quadratic

function for various values of c. To see this, consider the function

H(z) = az + P with cc# 0. Then h1l(f(h(z)) = (d2z2 + 2al3z + p2 + c -J)/c.

Appropriate choices for the values a, P, and c produce any quadratic
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'function whatsoever. Thus, in studying the dynamics of f(z) = z2 + c, reveals

the entire family of quadratic functions.

N. THE SMALE HORSESHOE

Our attention so far has been restricted to one-dimensional dynamical

systems. In so doing, we have learned much about chaos. However, since

many real-world phenomena occur in two and three dimensions, the range

of applications has been restricted. We now investigate our first two-

dimensional dynamical system, the Smale horseshoe. Instead of developing

the horseshoe algebraically, a strict geometric interpretation of the map is

given. The primary references for this section are Holmes (1989),

Guckenheimer (1990), and Devaney (1989).

The Smale horseshoe was originally constructed to help interpret the

periodically forced oscillator, which commonly appears in applications in

physics, mechanics, and electrical engineering. Normally, the systems under

investigation are modeled with ordinary differential equations, and the

Smale horseshoe turns out to provide an intuitive way to see why the

equations sometimes lead to chaotic behavior.

Many versions of the Smale horseshoe exist. We present here the

version that is the simplest geometrically. Thus, take the unit square in

Figure 4.42, stretch it out by a factor of three in one direction, and

simultaneously shrink it by a factor of three in the other direction to obtain a

long bar. Then bend the middle section of the bar into a horseshoe and

superimpose it back on the original square, as shown in the figure. Denote

this geometric mapping by F. Notice that the two shaded bands do not escape
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'the unit square under this first iteration. Their preimages are the horizontal

bands shown in the figure.

Because the preimage of F can be determined precisely, it is an invertible

map. Thus it is possible to study not only the forward orbit of points, but

their backward orbits as well. We are interested in finding the invariant set of

the unit square under the forward and backward orbits of F. These are the

points which do not escape the unit square under infinite forward and

backward iteration. Then we will be able to investigate the dynamics of the

particular physical system associated with the Smale horseshoe by studying

the dynamics on this invariant set.

D STEP2 STRETCH A

A B STP3A B

STEP 1
START

C D C D

C D B

Figure 4.42 Construction of the Smale horseshoe.
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Now, iterate the map a second time, as shown in Figure 4.43. Observe

that the image of the shaded area of the first iteration, and its preimage appear

as before.

PREIMAGE

C G H D

CG HD BF EA

Figure 4.43 The second iteration of the Smale horseshoe.

By superimposing the image of F on its preimage for the first two iterates, we

construct geometrically an invariant set, shown as the darkly shaded region

in Figure 4.44. Here we label the horizontal and vertical bands H and V,

respectively.
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H(1) 

HI1

H(1 0)

H(0) H(01)

H(00)

V(0) V(1) V(00) V(01) V(10) V(11)

Figure 4.44 The invariant set of the Smale horseshoe.

Notice that the set of points A remaining in the unit square under

infinite forward and backward iteration has a Cantor-like appearance. In fact,

that set turns out to be the direct product of two Cantor middle-thirds sets.

The variations of the Smale horseshoe mentioned earlier involve using

different values for shrinking and stretching the unit square under F, as well

as using a different placement of the horseshoe when it is superimposed back

on the square. All variations, however, still create Cantor-like invariant sets.

In order to understand the dynamics of this system, we only need to

analyze the dynamics on the invariant set (since all other points escape under

iteration for F). To undergo this analysis, first note that the forward and

backward orbits of any point x in the invariant set also belong to it.

Specifically, each point in these orbits is in one of the horizontal bands HM or

Hi. Hence, define the mapping S: A--Z by the rule Sj(x) = i if Fj(x) e Hi for

i e (0, 1). Thus, every point x in the invariant set is associated with an

infinite string of indices of the horizontal bands to which it is mapped under

F. Noticethat the index of points in E runs j=...,-3,-2,-1,0, 1,2,3, .... So

unlike code space Z2 for one-dimensional maps (which consisted of semi-
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'infinite sequences), the space I consists of bi-infinite sequences. Figure 4.45

shows a point x and its orbit under three forward iterates and one backward

iterate. So for j -1..,-, 0, 1, 2,3,..., Sj(x) =... 00100... from the

horizontal bands in which each iterate lies. Noticing that Sj(F(x)) = Sj+l()

one sees that F applied to the set A corresponds to the shift map a on the

space Y, Moreover, every symbol in 1: corresponds to a unique orbit of F,

because every image V completely intersects its preimage RL Therefore, the

mapping F and the shift map a on infinite code space are topologically

conjugate through the map S, as shown in Figure 4.46.

The horseshoe map has been very useful in analyzing physical systems

because it extends to any Euclidean space Rn. The connection with ordinary

differential equations is through a concept known as the Poincare map. If the

phase space associated with an ordinary differential equation is intersected

with a plane normal to any orbit, then the orbit intersects the plane exactly

once during each cycle. The collection of these points of intersection is called

the Poincare map. While the horseshoe map was constructed originally in

connection with the Poincare map of a periodically forced oscillator, there is a

general method for finding horseshoes that applies to a wide range of

Poincare maps. The procedure has helped scientists and engineers

understand the dynamics of the associated physical systems.

The actions of stretching and bending in the Smale horseshoe are

frequently encountered in physical systems. Predicting the orbit of points in

such systems (a simple taffy pull serves as a classical example) has always

proven elusive. The science of chaos has helped explain why these systems

have been so difficult to understand.
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Figure 4.45 The orbit of a point x of the invariant set.
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Figure 4.46 The topological conjugacy between F: A-+A and a:. 7-1.

O. THE HIENON MAP

With the Smale horseshoe providing a geometric introduction to two-

dimensional dynamical systems, we now turn our attention to another map

of the plane that exhibits many of the interesting properties of two-

dimensional maps. The material in this section is presented as a series of

exercises in Devaney (1989), to which most of the answers and results come

from Rasband (1990), Alligood (1989), Cherbit (1991) and Moon (1987).
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"The Henon map Hab: R2-+R 2, is defined by the equations

xi =1 + yo- axo2,

yi = bxO.

Notice that H depends on two parameters, a and b, and that it has only one

nonlinear term (x2). Thus H is one of the simplest higher-dimensional

nonlinear maps we can study. A number of questions regarding the Henon

map have not been resolved because of the wide range of possible parameter

values, but for certain parameter values it exhibits some very interesting

behavior.

First, note that the Henon map can be expressed as the composition of

three maps H 3oHoHi, where Hi(x, y) = (x, 1 - ax2 + y) is a nonlinear bending

(and a quick check with calculus shows it is area preserving); H2(x, y) = (bx, y)

is an expansion or contraction in the x direction, depending on the value of

b; and H3(x, y) = (y, x) flips the contracted, bent image about the main

diagonal.

The case b = 0 makes the Henon map topologically conjugate to the map

g(x) = 1 - ax2 if we consider the projection of H onto the x-axis. For the case

lb I > 1, the map H 2 is not a contraction and the iterates diverge. Hence, we

restrict our attention to the range 0 < I bI < 1.

Now fix b. It is easy to show the fixed points of the Henon map are

(x, y) = [b- 1 ± ([b- 112 + 4a)1 /21/2a, bx).

A doser inspection reveals that for (b - 1)2 + 4a < 0, or a < -(b - 1)2/4, these

points have an imaginary component yielding no fixed points in R2.

Moreover, when a = -(b - 1)2/4, the fixed points coincide (so there is only one

attracting fixed point). Finally, for a > -(b - 1)2/4, there are two distinct fixed
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"points, one of which is attracting. Here, for a fixed value of b, as the

parameter a increases through a critical parameter value, a tangent

bifurcation occurs.

As the parameter a continues to increase a series of period-doubling

bifurcations appears eventually leading to chaos. Let a. denote the value of

a beyond which chaos occurs. Then the dynamics of the Henon map can be

determined geometrically in a familiar setting. For a fixed value of b, let R

be the larger root of a42 - (b - 1)4 - 1 = 0. Let S be the square centered at the

origin with vertices at (±Wk, ±R). Figure 4.47 shows the images of S under H

for a < a.. and a > a.. Note also the effects of H1, H2, and H3 in the way the

square S is bent, contracted, and flipped. Additionally, for a > a., the

geometric construction looks similar to the Smale horseshoe (and, in fact, it is

a horseshoe). Thus the dynamics of the map H for a > a. (for a fixed b) are

indeed chaotic.

'•- • 1. X - X

a<a a>a

Figure 4.47 The images of S under the Henon map.
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The particular value b = 0.3 has been studied extensively and the tangent

bifurcation occurs at a = .1225. If a increases holding b = 0.3 constant, in the

range 1.052 < a : 1.082 a series of period-doubling bifurcations occurs which

eventually lead to chaotic behavior.

A particularly interesting phenomenon occurs close to b = 0.3 and a = 1.4.

Here we have an attractor of the system. The infinite iteration of bending,

shrinking, and flipping the plane yields results not yet fully understood.

Nevertheless, with the aid of computers, it has been possible to compute

these results numerically and view them graphically. Iterating an initial

point (xN, yo) under H yields a set of points, called the attractor of H, that

appear to be invariant under infinite iteration of R The attractor of H for

the values b = 3 and a = 1.4 is shown in Figure 4.48. The dynamics on this

attractor are chaotic (as just shown geometrically with the analog to the Smale

horseshoe). Numerically it has been found that the attractor appears to have

a dense orbit, sensitive dependence on initial conditions, and to be

topologically transitive. However, since the evidence of this invariant set has

only been suggested by the use of numerical computation (and not established

with any mathematical rigor) many of its properties are still not dearly

identified.

The Henon attractor (if it truly exists) for b = 3 and a = 1.4 fits into a

class of attractors referred to as strange attractors. While a formal definition

of strange attractor has notbeen developed to date, there are three conditions

that seem to be characteristic of them. These characteristics are:

i. Points "nearby" the attractor converge to the attractor under infinite

iteration of the function.
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2. The dynamics of points on the attractor are chaotic.

3. The attractor has a non-integer fractal dimension.

S..-: I..°°

S-• /•- -

Figure 4.48 The Henon attractor. The figure is from Holden (1986, p. 90).

By "nearby" we refer to a region of the plane called the basin of attraction,

inside of which all points converge to the attractor. The basin of attraction

depends on the particular function, but in the case of the Henon attractor it

turns out to be the entire Euclidean plane.

Magnification of the Henon attractor indicates that it is infinitely detailed,
as evidenced by the "bands" in Figure 4.49 actually being composed of smaller
bands of points. Additionally, its fractal dimension has been estimated

numerically at 1.26 for the parameter values b = .3 and a = 1.4.
Nevertheless, considerable mystery remains concerning the Henon attractor

(as well as many of the other interesting strange attractors that have been

153



discovered numerically or physically). Because of their structure and self-

similarity, fractal geometry is currently being applied to the study of strange

attractors.

L6, b-

L3 LM

U.'

Lt

L17

:0 C9il .S L-N ILV l11U r.ll

Figure 4.49 Magnification of the Henon attractor. The figure is from
Berge (1984, p. 133).

While strange attractors come up in models of physical equations such as

the Duffing equation, the van der Pol equations, or the Rossler equations,

they have also been'seen in physical systems. While many infectious diseases

appear to follow definite cycles, measles appears to follow a strange attractor

with fractal dimension 2.5 when viewed in the proper phase space.

Additionally, Saturn's rings, because of their remarkable resemblance to the

strange attractors of many mathematical systems, are being studied in this

new light in great detail (however, this connection is still being investigated,

and no conclusions have yet been drawn).

A final remark about the Henon map: if we set the parameter b = 1, the

map becomes an area preserving map of the plane. Since the map Hl(x~y)=
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'(x, 1-ax2 + y) is area preserving as observed earlier, we see that with b = 1,

H 2(x, y) = (x, y) and H3(x, y) = (y, x) also preserve areas. This condition leads

to an entirely new set of phenomena, one of which we briefly mention here.

As the parameter a increases, orbits of different periods are created, but the

last orbit to develop is a two-cycle. This provides an example of where

Sarkovskii's theorem fails to apply in two dimensions.

P. THE LORENZ EQUATIONS

It is appropriate to conclude our mathematical treatment of chaos with

the Lorenz equations because they comprise one of the first systems to bring

chaotic dynamical systems to the attention of the mathematical community.

The primary references for this section are Sparrow (1982), Holden (1986), and

Fischer (1985), although some of the presentation follows that of Berge (1984),

Guckenheimer (1990), and Thompson (1989).

The Lorenz equations have been studied extensively since the mid 1970s,

and numerous interesting results have been derived from them. However,

to discuss many of these results requires mathematics beyond the level of this

thesis. We present here a cursory summary of some of the results which are

consistent with the mathematical level of this thesis, and particularly those

which relate to some of the material we have already discussed. A rigorous

mathematical derivation of the results we present here can be found in

Sparrow (1982).

The Lorenz equations were developed in an attempt to model the earth's

atmosphere to simulate weather patterns using a small computer. The

Lorenz system is defined as follows:
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dx/dt = -ox + ay

dy/dt = rx - y -xz

dz/dt = xy - bz,

with a, r, and b positive parameters. This is an example of a continuous

dynamical system. This system models a flat fluid layer being heated from

below and cooled from above (representing the Earth's atmosphere being

heated from the ground's absorption of sunlight and losing heat into space).

In the resultant temperature flow, x represents the convective motion, y

represents the horizontal temperature variation, and z represents the

vertical temperature variation. The parameters u, r, and b are related to the

Prandtl number, the Rayleigh number, and the size of the region being

modeled (see Figure 4.50).

COOL PE BOUNDARY
Y

WARM LOWER BOUNDARY

Figure 4.49 The model for the Lorenz equations.

The Lorenz system is a very crude model of weather dynamics and is of

little practical value. Actually it has been studied most extensively for

parameter values that are nowhere near those of the Earth's atmosphere.

While the system does have physical relevance to the Maxwell-Bloch

equations for lasers, and to convection problems in specially shaped regions
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(usually toroidal), they attract the most attention because of the wealth of

information they provide about dynamical systems.

For one-dimensional or planar systems of differential equations, the

Poincare-Bendixson theorem (see Hirsch, 1974, p. 248) guarantees that one can

completely classify the solution, as to whether it approaches a fixed point or

limit cycle, or goes to infinity in a finite amount of time. However, there is

no analogous theorem in three dimensions where many systems with

interesting behavior are being discovered. The Lorenz system is of great

mathematical interest because it possesses many of the characteristics of other

higher-dimensional systems. This is not to say it is typical, as it has some

distinct characteristics (for example, symmetry) but it does demonstrate

characteristics typical of many general higher-dimensional systems.

Because the original paper on this subject by Lorenz (1963) fixed the

parameter values at r, = 10 and b = 8/3 and investigated the system as the

parameter r varied, much of the literature has taken this same approach, as

we do here. Hence, we consider the system

dx/dt = 10(y- x),

dy/dt = rx - y- xz,

dz/dt = xy -(8/3)z.

First note the apparent simplicity of the system. There are only two

nonlinear terms, xz and xy. Also, there is a natural symmetry to the

equations given by (x, y, z,) -+ (-x, -y, z). The z-axis is invariant because

points which start on it stay there and tend towards the origin. Moreover,

when x = 0 the dx/dt term carries the same sign as y so that all points
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which rotate about the z-axis do so in a clockwise manner when viewed from

above z = 0.

The model has no solutions which tend to infinity; in other words, there

is a surface inside of which all solutions tend towards the origin and herein

all solutions remain. To see this, consider the ellipsoid f(x, y, z) = x2 /2o +

y2/2 + z2/2 - (r + 1)z - p = 0 for p arbitrarily large. We show that the dot

poduct of the velocity vector and the outward normal vector to the ellipsoid

is always negative, i.e., Df = (dx/dt)fx + (dy/dt)fy + (dz/dt)fz < 0. Substituting

into the Lorenz equations we obtain Df = a(y - x)fx + (rx - y - xz)fy + (xy - bz)fz.

Then substitution of the ellipsoid partial derivatives yields If = -x2 - y2- bz2 +

(r + 1)bz. For large enough I in the equation for the ellipsoid, the quadratic

term in z in the expression for If always dominates the linear term in z, so

for this surface the flow is always towards the origin. Hence, no trajectory

originating a finite distance from the origin will go to infinity.

We now analyze the system for a =10 and b = 8/3 as we vary r. To

begin, we restrict our attention to small values of r (i.e., r < 30). A quick

check shows the origin is a fixed point for all parameter values, but we would

like to know whether it is attracting or repelling.

We introduce here the concepts of stable and unstable manifolds. A

stable manifold of a point p is the set of all points that tend to p in forward

time (as t-). The unstable manifold of p is the set of points that tend to p

in backward time (as t--+--). For our purposes, a manifold can be thought of

as simply a surface in phase space. These manifolds can be determined from

the eigenvalues of the linearized system near the point p. The linearized

system has the matrix:
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'°0

r-z- -x,

y x -b

which, when evaluated at the origin yields

The eigenvalues of this system are X1, X2 = (112)[-o-1± ((a - 1)2 + 4or)1/21, and

X3 =-b.

Since, for r < 1, we have [(a - 1)2 + 4cr'l/2 < [(- 1)2 + 40]1/ 2 = a + 1, so all

three eigenvalues of the linearized system evaluated at the origin are

negative. Hence, the origin is globally attracting. The phase portrait of this

condition is shown in Figure 4.51. However, for r = 1, the eigenvalues

evaluated at the origin are X1 = 0, X2 = -a - 1, and . 3 = -b. This zero

eigenvalue is analogous to the nonhyperbolic fixed point we encountered in

our study of discrete systems. We require more theory to determine whether

the manifold associated with this eigenvalue is stable or unstable. For r > 1,

the eigenvalues are X1 > 0, X2 < 0, and X3 < 0. Since two of these eigenvalues

are negative and one is positive, the origin has a two-dimensional stable

manifold and a one-dimensional unstable manifold for r > 1.

As r passes through 1, not only does the origin become unstable, but two

new fixed points are introduced at (±b(r - 1)1/2, ±b(r - 1)1/2, r- 1) which we

denote C+ and C-. You should recognize this as a bifurcation. A similar check

as we did above of the linearized system near these points shows that they
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have complex eigenvalues. Furthermore, for values of r < rH (as defined

below), the real parts are all negative. Hence, these points are attracting. The

phase portrait of the system for 1 < r < rH is shown in Figure 4.52.

0

Figure 4.51 The origin is globally attracting for r < 1.

C" 0 c+

Figure 4.52 Phase portrait of the Lorenz system for 1 < r < rH.

Numerical solutions to the Lorenz equations indicate that for

1 < r < 13.926, orbits on the unstable manifold of the origin tend directly to the

nearest attracting fixed point C+ or C-, as indicated in Figure 4.53. However,

for r > 13.962, these orbits "cross over" and are attracted to the other stable

point (see Figure 4.54).
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Figure 4.53 Solution trajectories for r < 13.962.

Unstable manifold
A " of the origin

table manifold
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Figure 4.54 Solution trajectories for r > 13.962.
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Since we know the stable manifold of the origin is planar near the origin

and includes the entire z-axis, and since trajectories cannot cross each other,

the stable manifold must be twisted in some strange way. What happens here

is the stable and unstable manifolds of the origin merge and form an orbit

called a homoclinic orbit. A homodinic orbit of a point p is a set of points

that tend to p in both forward and backward time (see Figure 4.55). The

introduction of a homoclinic orbit is another example of a bifurcation.

Figure 4.55 The homoclinic orbit of the Lorenz equations.

As r continues to increase, we note that at r = rH = [G(a + b + 3)]/(o - b -1),

the real parts of the complex eigenvalues of the linearized system at C+ and

C- cross the imaginary axis and become positive. This is another example of

a bifurcation as C+ and C- become unstable. Hence all three fixed points are

now repelling. For o= 10 and b = 8/3, rH - 24.74, numerical solutions

indicate that for r > rH, there is an attractor (called the invariant set) to which

all solutions tend as t-+-.
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Figure 4.56 shows this invariant set for r = 28, b =8/3, and a = 10 as it is

projected onto the xz-plane. This invariant set is a strange attractor and it

exhibits some interesting properties. For example, the trajectory continues

forever within the bounds shown, yet never crosses itself or returns to the

same point in space. Additionally, the dynamics on the attractor are believed

to be chaotic, although for continuous systems more theory is required than

developed in this thesis.

40 1
30o

z

20

10

-10 0 10 20
X

Figure 4.56 The Lorenz attractor. The figure is from Holden (1986, p. 126).

There is no closed form solution to the Lorenz equations, so most of the

evidence as to their behavior has been obtained numerically and is
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conjectured. However, the following results for small values of r have been

verified computationally numerous times, and are widely accepted as the

system's true behavior:

1. For r < 1, all solutions tend towards the origin.

2. For 1 < r < 13.926, all trajectories spiral into one of the attracting fixed

points C+ and C-.

3. For 13.962 < r < 24.06 an invariant set appears in the trajectory, and some

solutions wander among the invariant set before spiraling into either C+

or C-. The closer r gets to 24.06, the longer some solutions stay near the

invariant set.

4. For r > 24.06, some trajectories stay forever near the invariant set,

although for r < 24.74, some trajectories eventually spiral into C+ or C-.

For r > 24.74, the fixed points C+ and C- become repelling, and all

trajectories remain forever near the invariant set. These invariant sets

are similar to the one shown in Figure 4.56, and get closer to it as r

increases.

Using an analysis similar to the Poincare map, we can see a further

connection between continuous and discrete systems. Considering the

homoclinic orbit of the Lorenz equations, we can construct a small box about

the origin, and analyze where orbits near the homoclinic orbit penetrate this

surface. This analysis shows variations on many of the exotic structures we

studied for discrete systems, including horseshoes and Cantor "books" or

"fans," which are families of two-dimensional Cantor sets "sewn" together
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along a one-dimensional manifold, or "spine." These intriguing results are

all presented in Sparrow (1982).

For large values of r, numerical solutions to the Lorenz equations have

been obtained that exhibit many of the phenomena we studied earlier for

discrete systems. For values of r in certain intervals (called "windows"),

stable periodic orbits develop that bifurcate as r decreases through the

window. One such window appears at 99.542 < r < 100.795. For

99.98 < r < 100.795, the orbit shown in Figure 4.57 appears. In the interval

99.62 < r < 99.98, a different orbit appears which has two "loops" that pass very

close to each other (see Figure 4.57). This is a period-doubling bifurcation as r

decreases through the critical value r = 99.98. An entire sequence of period-

doubling bifurcations occur as r decreases from 100.795 to 99.542. If we let rn

be the values at which these bifurcations occur, then evaluation of the ratio

(rn-1 - rn)/(rn - rn+j) yields approximately 4.67 in the limit, which is very dose

to the Feigenbaum constant.

PAR 140-

*1- j12.
300 7 100-
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X 80

-2o 0 20 -23 0 20

Figure 4.57 Orbits for r = 100.5 and r = 99.65. The figure is from Sparrow
(1982).
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A second window appears from 145 < r < 166. The numerical solutions

for r = 160 and r = 147.5 are shown in Figure 4.58. Again, period-doubling is

apparent. A final window occurs for 214.364 < r < ,. Period-doubling is

again observed in the solutions for r = 350, 260, 222, and 216.2, as shown in

Figure 4.59. Additionally, a symmetric orbit is seen for r = 350.

200-
175 

I

150

I00 - , * ' ' ' " 0 - "" " .10. . .

S40 -20 0 20 40 -40 0 0 00

Figure 4.58 Orbits for r = 160 and r ,147.5, showing period-doubling.
The figure is from Sparrow (1982).

.30

Figure 4.59 Orbits for r :350, 260, 222, and 216. The figures are from
Sparrow (1982).



These are just a few examples of the many observed phenomena of the

Lorenz equations. Additionally, because of the wide range of parameter

values, there are even more unanswered questions about the system.

However, in light of what we studied for discrete dynamical systems, these

results have a direct analogy to the discrete phenomena we studied earlier.

Although the Lorenz equations reveal very little about the weather, they

do give considerable information concerning continuous dynamical systems,

a small amount of which was discussed here.

The behavior of the system does tell us that weather is unpredictable to

any degree of accuracy projected for any large amount of time into the future.

From what we know about chaotic dynamical systems (and weather is surely

chaotic), even if we were to develop an accurate model and measure

atmospheric conditions accurately on an arbitrarily small grid, the sensitive

dependence on initial conditions of the system causes any computed

(predicted) solution to stray arbitrarily from the actual weather, given the

slightest reading error. Additionally, small perturbations (which could never

be modeled) such as a single person lighting a match, could cause the whole

system to follow a new orbit. On the other hand, if weather follows some

strange attractor on which the dynamics of the system are chaotic, then not

only is it unpredictable (sensitive dependence on initial conditions), but every

type of weather possible (topological transitivity) could be experienced.

Moreover, there will be a dense period, providing some order to the weather

allowing us to predict such things as seasonal changes.
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